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Abstract

Magnetic Particle Imaging (MPI) is a novel imaging modality allowing
for the detection of the spatial distribution of magnetic nanoparticles at
high spatio-temporal resolution. This thesis provides a comprehensive
theoretical part, describing the origin and the properties of the signal in
MPI as well as the most important dependencies.

The impact of magnetic particle interaction on the MPI signal is
investigated by simulation and experiment: it is shown that higher har-
monic amplitudes An are not linearly related to particle concentration
c, as misleadingly suggested by LANGEVIN’s single particle model
(SPM). Therefore, current linear image reconstruction schemes have
to be revised. A more sophisticated magnetization theory matches
experimentally gained An(c) data very well and consequently is the
preferable choice over the SPM.

Finally, this thesis presents a new method for the detection of mag-
netic particle agglomerates/clusters based on the nonlinear An(c) re-
lation. This method can be applied to test for specific substances or
processes on a molecular level.
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Chapter 1

Introduction

In 2005, Magnetic Particle Imaging (MPI) has been introduced as an
imaging technique to perform background-free detection of the spa-
tial distribution of magnetic nanoparticles (made of e.g. iron oxide)
in biological tissue [1]. In particular, regarding cellular and molecular
imaging or e.g. angiography, MPI may surpass contrast agent-based
Magnetic Resonance Imaging (MRI), due to the intrinsic features of
the method: high sensitivity and – concurrently – high temporal resolu-
tion. Therefore, MPI is a research and diagnostic platform with high
potential.

In MPI, the detection of magnetic nanoparticles is based on their
non-linear magnetization response. Due to the design of the method,

Figure 1.1: Picture taken out of [2]. Three-dimensional MPI angiography
of a mouse, after injecting a magnetic tracer into its tail vein. Color: MPI
image, taken out of a time series of three-dimensional datasets. The tracer
bolus just goes through vena cava. Gray: Corresponding anatomy image of
the same mouse, done in a separate MRI.
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1. INTRODUCTION

these particles are detected with positive contrast. In a biological
system, everything surrounding the particles has a linear magnetization
response, ideally leading to no false-positive MPI background signal
in medical applications. This is a huge advantage over MRI. Here,
magnetic nanoparticles destroy signal, leading to a negative contrast.
Therefore, MPI has the potential to be more conclusive than contrast
agent-based MRI.

The first serious MPI results have been presented in 2009 [2]: the
authors managed to accomplish a three-dimensional real-time angiogra-
phy of a mouse, as indicated in Figure 1.1. However, the theory MPI is
built on still is in the process of establishment and has to be investigated.
This is where this thesis starts.

Based on important physical concepts like superparamagnetism,
magnetic particle spectroscopy and non-linear response in general,
the investigations in this work concentrate on the impact of particle
concentration c on the MPI signal. This is very important, since for
tomography, the spatial particle distribution c(~x) has to be reconstructed
from the MPI signal. To gain a quantitatively correct image, the depen-
dency of the MPI signal on c has to be known exactly and accounted
for. At this point, previous works used a very simple magnetization the-
ory, LANGEVIN’s single particle model, which yields a linear relation
between signal an c.

However, due to magnetic dipole-dipole interaction, this actually is
a non-linear relation. In this work, the concept of MPI is extended by
investigating the impact of magnetic particle interaction theoretically,
by simulation, and by experiment.
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Chapter 2

MPI basics

This chapter is a detailed composition of MPI’s fundamental theory.
The primary goal is to prepare the special approaches and deliberations
of this thesis. Another intention of this chapter is to form an entire MPI
starter reference, providing theoretical background for all important
concepts MPI is constituted of.

2.1 Overview
A ferrofluid is a suspension of magnetic nanoparticles1. If each particle
features a giant magnetic moment, the fluid behaves superparamagnetic,
resulting in a strong magnetization response to externally applied mag-
netic fields. This phenomenon of superparamagnetism will be described
in part 2.3.

The interaction of a ferrofluid with an external magnetic field – and,
in particular, its magnetization response to it – is the essence of most
applications incorporating ferrofluids. Likewise, MPI is built on top of
this magnetization response. Fundamental research in MPI starts with
the understanding of and the ability to predict a ferrofluid’s magneti-
zation behavior. Therefore, after a general description of ferrofluids in
part 2.4, the simplest case to consider theoretically, a dilute2 ferrofluid,

1 Particles with dimensions on nanometer scale.
2 A ferrofluid with very low particle concentration.
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2. MPI BASICS

will be discussed in part 2.4.3, introducing LANGEVIN’s single particle
model.

With this theoretical background, the reader is well-prepared to
get confronted with “zero-dimensional MPI”: the spectroscopical eval-
uation of a ferrofluid’s non-linear magnetization response, which is
described in part 2.5.

Finally, GLEICH and WEIZENECKER’s methods for determining
the spatial distribution of magnetic particles are explained in part 2.6.

2.2 Paramagnetism
A system of noninteracting atomic magnetic moments obeys the laws of
ideal CURIE paramagnetism [3]. Such a system’s relative magnetization
in an external magnetic field is derived now, using a mixture of quantum
mechanics and classical statistics.

Consider a single magnetic moment ~m with quantum mechanical
behavior1:

~m = gµB
~J

~
, (2.1)

where g is the LANDÉ factor, µB is BOHR’s magneton, ~ is the reduced
PLANCK constant, and ~J is the total quantum mechanical angular
momentum (the sum of spin and orbital contributions). Let J be the
corresponding total angular momentum quantum number.

Consider a z-direction, defined by an external magnetic field ~B
(| ~B| = Bz ≡ B). The projection of ~J on the z-axis is ~Jz; its absolute
value is Jz and the corresponding quantum number is jz:

Jz = ~jz (2.2)

A quantum mechanical system with total angular momentum number
J has exactly 2J + 1 discrete states, distinguished by jz = −J,−J +
1, . . . , J−1, J . The quantized Jz is leading to a quantized z-component
of the magnetic moment mz:

mz(jz) = gµB
Jz
~

= gµBjz (2.3)

1 E.g. a single atom.
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2.2. Paramagnetism

The magnetic moment’s absolute potential energy is mz(jz) ·B, so the
system’s energy splits up into discrete levels for B 6= 0 (ZEEMANN

splitting).
Having these energetically discrete system states, the mean mag-

netic moment 〈mz〉 in field direction for a given temperature T is easy
to derive from classical BOLTZMANN statistics1:

〈mz〉 = gµB 〈jz〉 = gµB
Z

jz=+J∑
jz=−J

jze−
mz(jz)B

kT (2.4)

with the partition function

Z =
jz=+J∑
jz=−J

e−
mz(jz)B

kT . (2.5)

and the BOLTZMANN constant k.
Considerable manipulation of Equation (2.4) leads to the quantum

mechanical BRILLOUIN function BJ(B, T ), giving a directly evaluat-
able expression for 〈mz〉 [4]:

〈mz〉 = gµBJBJ(B, T ) (2.6)

with

BJ(B, T ) = 2J + 1
2J coth

(2J + 1
2J a

)
− 1

2J coth
(
a

2J

)
, (2.7)

whereas

a = gµBJB

kT
. (2.8)

Paramagnetic system’s magnetization behavior
Now consider a system made of many noninteracting quantum mechan-
ical magnetic moments. BJ(B, T ) provides the whole system’s relative
magnetization Mrel:

Mrel = 〈Mz〉
M∞

= BJ(B, T ). (2.9)

1 Here, minimization of magnetic energy is the opponent of thermal agitation.
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2. MPI BASICS

〈Mz〉 is the mean total magnetization in field direction. M∞ is the
theoretical saturation magnetization for B →∞. Saturation is reached,
if all magnetic moments had maximum allowed1 alignment with the
external magnetic field.

In the absence of an applied field, the independent atomic moments
– driven by thermal energy – point at random directions and cancel out
each other. Thus, in this case, the system’s total magnetization is zero.
This is characteristic for paramagnetic systems.

2.3 Superparamagnetism
Magnetostatic energy in a ferro- or ferrimagnet is minimized by form-
ing the material into magnetic domains. But formation of domains costs
energy itself and so there is a critical minimum domain size that mini-
mizes the total energy of the system. Consequently, a single particle of
a size below the minimal domain size is a homogeneously magnetized
single-domain particle [5].

2.3.1 Classical limit: giant magnetic moments
A single-domain particle may consist of 104 or even many more single
atoms [4]. Below the CURIE temperature, this means that all these
atomic magnetic moments in this single magnetic domain are strongly
coupled and yield a giant total magnetic moment [5]. The critical
particle size, up to which the single-domain state is the energetically
preferred one, depends on the actual material and is on the order of 1 to
100 nm. Detailed numbers regarding different materials are delivered
in [6].

The magnetization of a system constituted by noninteracting giant
magnetic moments can be perfectly described by the theory of CURIE’s
paramagnetism, as introduced in part 2.2. It is just the size of the
magnetic moment and the angular momentum quantum number J that
have to be chosen properly.

When magnetic moment carriers involve so many elementary mag-
netic moments as single-domain particles do, quantum effects get ir-

1 For quantum mechanical magnetic moments, the z-component is limited as given by
Equation 2.3. Thus, completely parallel alignment is not allowed.
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2.3. Superparamagnetism
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Figure 2.1: Classical limit of the BRILLOUIN function, the LANGEVIN

function L(α). It is used to calculate the relative magnetization of a system
of noninteracting and freely rotatable magnetic moments.

relevant. This is due to an extremely high spin quantum number J ,
allowing virtually free alignment of the giant magnetic moment to an ex-
ternally applied field. Then, it is justified to consider the classical limit
of CURIE’s paramagnetism, which is represented by the BRILLOUIN

function BJ(B, T ) evaluated for J →∞ [7] at room temperature:

B∞(B, T ) = L
(
mB

kT

)
(2.10)

wherem ≡ |~m| is the giant magnetic moment and L(α) the LANGEVIN

function:

L(α) = coth(α)− 1
α

(2.11)

Hence, applying a magnetic field to a system of noninteracting and
freely rotatable giant magnetic moments will induce a relative magneti-
zation as given by L(α) (see Figure 2.1).

2.3.2 Néel and Brown relaxation processes
The classical limit of CURIE’s paramagnetism, when single magnetic
moments can be considered as classic magnetic dipoles, is commonly

7



2. MPI BASICS

called superparamagnetism. Particles on the nanometer scale, exhibit-
ing giant magnetic moments, are commonly called superparamagnetic
particles, with “super” meaning large, as in superconductivity.

But this is not the entire definition of superparamagnetism. Two
different relaxation mechanisms have to be distinguished to define it cor-
rectly. The consideration of both relaxation types, NÉEL and BROWN

relaxation, is very important for applications of superparamagnetic
nanoparticles, like MPI.

Néel relaxation

The original meaning of superparamagnetism described a phenomenon
pointed out by NÉEL. Consider a mechanically fixed single-domain
particle. All its elementary quantum mechanical angular momentums
are coupled. The resulting giant magnetic moment is rigidly bound by
one or more of the possible anisotropies within the crystalline material
the particle is made of. It is “frozen” within the particle. For big
particles, the anisotropical energy EAI of this bond is very high in
comparison with realistic magnetic or thermal energies. But it changes
quickly with the particle’s volume. While shrinking this, a critical
barrier is passed. Below, the thermal energy kT is strong enough to
disrupt the magnetic moment’s bonding to the particle itself [5].

The NÉEL relaxation time τN(EAI/kT ) is a gauge for the mobil-
ity of a giant magnetic moment within a mechanically fixed particle.
Considerably below the critical particle size, the magnetic moment is
free to move and respond to an applied field, resulting in τN to of order
10−9 s. Around the critical particle size, τN changes by the factor 109

for a volume variation of the factor 2 [8].
Considering a fixed particle with a size below the critical one, an

externally applied magnetic field would try to align the giant magnetic
moment, fighting against kT . This is the classical limit of CURIE’s para-
magnetism. Hence, the relative magnetization is accurately described
by the LANGEVIN theory.

Brown relaxation

In the framework of most applications, magnetic single-domain parti-
cles are suspended in a liquid. In these cases, they are able to rotate

8



2.3. Superparamagnetism

mechanically, subjected by BROWNIAN movement. Since the counter-
force against such rotation is of hydrodynamic origin, the corresponding
BROWN relaxation time τB depends on thermal energy, particle volume
and the liquid carrier’s viscosity. For water or kerosene as solvent, τB
is on the order of 10−7 s [8].

2.3.3 Critical sizes and characteristical time scales
There are two critical particle volumes. First, Vsd, below which the
single-domain state is energetically preferred, exhibiting a giant mag-
netic moment. Second, an even smaller volume, Vsp, below which
this giant magnetic moment is able to rotate almost freely within the
mechanically fixed particle, governed by the NÉEL relaxation time τN
and showing superparamagnetism in its original sense.

Particles with a volume below Vsd but above Vsp are important for
all applications that require single-domain nanoparticles with huge
magnetic moments. But they cannot automatically be considered as su-
perparamagnetic (i.e, in the sense of the phenomenon NÉEL discovered
and describable with the LANGEVIN theory). Both of the following
conditions must be fulfilled:

• The particles have to be able to rotate mechanically (as is the case
when they are solved in a liquid carrier).

• Magnetic field changes and measurements must happen on a
larger time scale than given by τB.

Then, it is fundamentally the same as “NÉEL’s superparamagnetism”:
an external field would fight thermal energy and try to align the mag-
netic moment by – this time – mechanical rotation of the whole parti-
cle. From this it follows that such a system is described correctly by
the LANGEVIN theory, too. The case described can be considered as
“BROWN’s superparamagnetism”.

As stated in [5], the critical particle diameter for iron, below which
“real” superparamagnetism in the sense of NÉEL occurs, is 8.5 nm.
Below that size, the dominant relaxation mechanism is the NÉEL relax-
ation, even for mechanically rotatable particles. This type of relaxation
(τN ≈ 10−9 s) is allowing higher excitation and measuring rates than
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2. MPI BASICS

for bigger particles, which are dominated by mechanical and slower
BROWN relaxation (τB ≈ 10−7 s).

These time scales are important to consider in MPI, e.g. for choosing
an appropriate excitation frequency.

2.3.4 Para- vs. superparamagnetism
The fundamental behavior of paramagnetic and superparamagnetic
systems is the same, regarding the fact that thermal energy works
against the alignment of independent magnetic moments with an applied
magnetic field: there is no hysteresis and no residual field. But there
are two crucial differences between para- and superparamagnetism:
the field-dependency of the magnetic susceptibility χ and the absolute
magnetization values for the same external field strength.

The magnetic susceptibility χ is defined as the change of magneti-
zation M with the magnetic field H:

χ = ∂M

∂H
, (2.12)

where H = B/µ and µ is the magnetic permeability.
While CURIE paramagnetism is stronger than e.g. diagmagnetism,

it’s still weak in comparison with magnetically ordered states (like e.g.
ferromagnetism). At room temperature, typical magnetic susceptibili-
ties of substances showing CURIE paramagnetism are not higher than
10−2 [3].

Each superparamagnetic particle behaves like a huge atom, with its
angular momentum quantum number JSP being by a factor of several
orders of magnitude higher than JP of a conventional paramagnet. This
factor is the same between the resulting magnetic moments m. The
argument of the BRILLOUIN and LANGEVIN function is proportional
to the magnetic energy mB. Hence, the factor of several orders of
magnitude between JSP and JP arises again for the resulting mag-
netic susceptibilities and absolute magnetization values, considering
the linear regime of the BRILLOUIN and LANGEVIN functions.

In case of CURIE paramagnetism, it’s actually “impossible” to
leave the linear regime: for room temperature, saturation cannot be
achieved with the most powerful magnets [4]. Hence, the magnetic
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2.4. Ferrofluids

susceptibility χ is field independent: paramagnetic magnetization
behavior is always linear.

Superparamagnetic systems can easily be saturated, with moderate
magnetic field strengths, generable by conventional magnets. The initial
susceptibility χinit (around zero magnetic field) is much higher than
typical magnetic susceptibilities of substances showing CURIE para-
magnetism. Here, the discussed factor of several orders of magnitude
appears again. χ decreases for bigger field strengths. In the regime of
saturation, it converges to zero. Hence, superparamagnetic systems
(more general, systems made of giant magnetic moments) can eas-
ily be provoked to display non-linear magnetization behavior.

2.4 Ferrofluids

2.4.1 General properties
Ferrofluids (also called ferrocolloids or magnetic fluids) are colloidal
fluids, constituted of magnetic particles, which are most often made
of or containing ferro- or ferrimagnetic material. The particles are
suspended in a carrier fluid, which usually is an organic solvent, like
kerosene or water.

Ferrofluids are stabilized with the help of special surfactants the
magnetic particle cores are coated with. This prevents local agglomera-
tion1 due to magnetic and VAN-DER-WAALS forces as well as decom-
position of the magnetic cores, leading to highly persistent suspensions.

A true ferrofluid does not settle out and therefore is made of nano-
particles [9]. Then, thermal energy is sufficient to overcome gravita-
tional effects: BROWNIAN motion keeps the particles homogeneously
suspended.

If the particles are noninteracting (far away from each other) and
exhibit a giant magnetic moment (like homogeneously magnetized
single-domain particles), the whole fluid shows superparamagnetic
magnetization behavior and is called a superparamagnetic ferrofluid.

The liquid carrier allows the particles to rotate mechanically. De-
pending on the actual size of the particles within the fluid, either the

1 Or “aggregation”: sticking together of particles.
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2. MPI BASICS

NÉEL or the BROWN form of superparamagnetic relaxation is dominat-
ing the ferrofluid’s response to externally applied magnetic fields, as
explained in part 2.3.3.

Particle diameters and magnetic moments

The most widely used ferrofluids are based on spherically shaped na-
noparticles, i.e. the cores made of magnetic material are assumed to
be spheres. Surface effects lead to spin disordering, so the core is
surrounded by a demagnetized layer [10]. The effective magnetic core
diameter d only describes the homogeneously magnetized inner sphere.
This inner part of the particle can be considered as bulk material like in
a large-scale solid state. Hence, the bulk saturation magnetizationMs of
the corresponding material is valid for the homogeneously magnetized
inner sphere, too.

To be able to make a clear statement about the magnetizability of a
superparamagnetic ferrofluid, it is essential to know the actual strength
of the giant magnetic moments m the ferrofluid is constituted of. Since
magnetization M is magnetic moment m per volume V , the general
relation

m = MV (2.13)

can be used to calculate the magnetic moment of a spherically shaped
particle in dependence of its magnetic core diameter d:

m(d) = π

6Msd
3 (2.14)

During the synthesis of superparamagnetic nanoparticles (different
techniques are listed in e.g. [11]), a whole distribution of magnetic core
diameters is created. Depending on the actual production method and
some size selecting postprocessing (which can be done by filtration and
centrifugation), a more or less wide diameter distribution can be found
in the resulting ferrofluid.

For an entire description of a particular ferrofluid sample, it is
necessary to know the magnetic core diameter probability distribution
function p(d), which can be used to e.g. calculate the mean magnetic
moment 〈m(d)〉:

〈m(d)〉 =
∫ ∞

0
p(d)m(d) dd . (2.15)
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2.4. Ferrofluids

Measuring p(d) is a non-trivial task, as will be described in part 3.1;
but exact awareness is of particular importance: it excludes a huge un-
certainty in experiments and enables to reproduce experimental results
in simulations.

Ferrofluids with an extremely sharp distribution p(d) are considered
as monodisperse, while all other ferrofluids are called polydisperse,
i.e. they consist of particles with significantly different magnetic core
diameters.

2.4.2 Ferrofluids as contrast agents
In nuclear magnetic resonance imaging (MRI), superparamagnetic nano-
particles are well-established as contrast agents for molecular imaging,
i.e. gathering both anatomic and information on the molecular level
simultaneously: the giant magnetic moments are strong spin-spin re-
laxation enhancers and therefore destroy nuclear magnetic resonance
signal in their vicinity. In MPI, basically the same contrast agents can
be utilized to determine their spatial distribution.

Due to their nontoxicity, superparamagnetic iron-oxide nanopar-
ticles (SPIOs) are well-suited for medical applications in organisms
like humans [11]. Typically, the iron-oxide particle cores are enveloped
in a polysaccharide or synthetic polymer coating. A popular exterior
coating material is dextran or citrate, whereas the magnetic core is
often made of ferrimagnetic magnetite (Fe3O4) or maghemite (γFe2O3).
Depending on the actual particle size, shell structure and functionality,
there are many SPIO subclasses, like USPIO, MION, VSOP, CLIO and
others. A detailed description of these particle classes can be found in
[11], [12], and [13]. Furthermore, detailed listings of commercial SPIO
agents are shown, including their state of clinical approval.

For medical applications, the coating can be used to ensure bio-
compatibility if the core itself is toxic, as is the case for cobalt, which
exhibits a much higher magnetic moment per particle volume (bulk
saturation magnetization Ms) than e.g. magnetite. Cobalt nanoparticles
can be rendered nontoxic, if they are coated with gold [14] or citrate
[15].

If noninteracting giant magnetic moments are – as contrast agent –
injected into a biological system in form of stable particles, the whole
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system can be considered as superparamagnetic ferrofluid, regardless
of the particle’s particular realization.

2.4.3 Single Particle Model: dilute ferrofluids’
magnetization theory

The ferrofluid’s magnetization curve M(H) is the key quantity to cal-
culate the magnetization response to an externally applied or irradiated
magnetic field, if all other parameters are known.

In this part, the magnetization curve of a ferrofluid is discussed in
terms of LANGEVIN’s theory of superparamagnetism, i.e. noninteract-
ing giant magnetic moments are assumed, as it is well-established in
MPI literature, e.g. in [16]. This ferrofluid magnetization model will
henceforth referred to as Single Particle Model (SPM).

Consider a polydisperse ferrofluid constituted of particles yielding
an effective magnetic material density ρ ∈]0, 1], whereas the maximum
density ρ = 1 corresponds to the bulk material. The goal is to calculate
the system’s total magnetization MSPM(H, ρ) in terms of the SPM,
consulting the Equations 2.10 and 2.11, which describe the relative
magnetization of a superparamagnetic system. Using the magnetic
core diameter probability distribution function p(d) for averaging, this
results in the relative magnetization

Mrel,SPM(H) =
〈
L
(
µ0m(d)H

kT

)〉
. (2.16)

µ0 is the vacuum permeability and kT the thermal energy. With a
specific system’s saturation magnetization M∞ (for H →∞), the total
magnetization is generally given by

M(H) = M∞Mrel(H) (2.17)

(cf. Equation 2.9). Considering ρ as the global density, defining the
magnetic phase volume fraction of the sample’s total volume, yields
M∞ = ρMs, with Ms being the bulk saturation magnetization of the
magnetic material. Hence, the SPM’s total magnetization can be ex-
pressed as

MSPM(H, ρ) = ρMs

〈
L
(
µ0m(d)H

kT

)〉
. (2.18)
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2.5. Magnetic Particle Spectroscopy

Strictly seen, the SPM is valid only in the limit ρ → 0, because
LANGEVIN’s theory of superparamagnetism assumes noninteracting
magnetic moments, which requires infinite distances between them. In
reality, the SPM predicts proper ferrofluid magnetization values if the
single giant magnetic moments almost do not "see each other". This is
the case for very dilute fluids, when the interparticle magnetic coupling
energy (due to dipole-dipole exchange interaction) is very small in
comparison with the energy of a single moment in the externally applied
field.

Neglecting interparticle interactions results in a model that is linear
in ρ (Equation 2.18 yields MSPM(H, ρ) ∝ ρ). Obtaining a theoretical
model that is valid for moderate and high particle densities, requires
the incorporation of magnetic interparticle coupling, which then leads
to a non-linear magnetization dependency on ρ, as will be discussed in
part 3.2.

2.5 Magnetic Particle Spectroscopy
Consider a system containing magnetic particles, getting excited by
a harmonically oscillating magnetic field. The system then sends out
another magnetic field; its magnetization response. If the system’s
magnetic susceptibility χ is not constant within the range of the excita-
tion field strength, the magnetization is non-linearly dependent on the
externally applied field strength. As explained in part 2.3.4, for systems
made of giant magnetic moments, χ already varies for relatively small
excitation field strengths.

In case of varying χ, the considered magnetic system features non-
linear response, a phenomenon that is generally known from various
physical systems exhibiting non-linear effects. A non-linear magnetiza-
tion response contains integer multiples of the harmonically irradiated
magnetic field’s frequency, so-called higher harmonics. The higher
harmonics’ general origin will be explained mathematically in part
2.5.1, introducing non-linear response theory. Higher harmonics in a
ferrofluid’s magnetization response will be analyzed separately in part
2.5.2.

A ferrofluid’s magnetization response can be detected inductively
and evaluated spectroscopically. Such an experiment could be con-
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2. MPI BASICS

sidered as “zero-dimensional MPI”, but a more appropriate term may
be Magnetic Particle Spectroscopy (MPS). MPS can be used to e.g.
investigate the characteristics of MPI contrast agents or for fundamental
research regarding the magnetization behavior of ferrofluids.

2.5.1 Nonlinear response theory
Many simple physical systems behave linear. There, e.g. displacements
or accelerations are linear to forces and currents are linearly related to
voltages, etc. Consider a system with an output quantity f that is the
response to some input x. f(x) is the transfer function between input
and output, characterizing the response behavior of the system.

Linear systems satisfy

flin(x) = K · x+ C, (2.19)

whereK andC are constants. But, there also are many physical systems
obeying non-linear laws due to non-linear effects, which are of practical
importance in various fields of physics. The following example should
help to understand a crucial consequence of non-linear response: the
generation of higher harmonics by a harmonically excited non-linear
responding system.

Harmonical excitation of a third-order non-linear system

Consider a non-linear distortion of a linear system1, which is a third-
order distortion in this case:

fnonlin(x) = K · (x+ εx3) (2.20)

ε defines the distortion’s relative strength. fnonlin(x) is compared to
flin(x) in Figure 2.2. Now suppose a harmonically oscillating excitation
of the system, i.e. the input exactly follows a sine or cosine curve over
the time t:

xharmonic(t) = A0 + A sin(ωt+ φ) (2.21)

1 To simplify matters, the offset C of Equation 2.19 is set to 0.
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Figure 2.2: A physical system’s transfer function f(x): response/output f
in dependence of the excitation/input x. Solid line: predominantly linear
responding system with small third-order non-linearity (Equation 2.20 with
ε = 0.3,K = 1). Dashed line: linear responding system (K = 1).

At this point, the simplest harmonic trajectory is treated, with A0 = 0,
A = 1, φ = 0 and the excitation frequency ω = ω0:

x(t) = sin(ω0t) (2.22)

The response then is

fnonlin(t) = K ·
(
sin(ω0t) + ε sin3(ω0t)

)
. (2.23)

Using

sin3(y) = 1
4 (3 sin(y)− sin(3y)) (2.24)

to replace sin3(ω0t) with power-free harmonical terms yields

fnonlin(t) =
(
K + 3Kε

4

)
sin(ω0t)−

Kε

4 sin(3ω0t). (2.25)

The response of a system with linear transfer function would have been

flin(t) = K · sin(ω0t), (2.26)
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Figure 2.3: Harmonically excited system’s response f(x(t)). Solid line:
predominantly linear responding system with third-order non-linearity
(Equations 2.22 and 2.23 with ε = 0.3,K = 1, ω0 = 1). Dashed line:
linear responding system (K = 1).

i.e. harmonically oscillating with the excitation frequency ω0 and al-
tered amplitude. In contrast, the third-order non-linearity in the transfer
function has caused significant changes in the system’s response. As
it is obvious from Equation 2.25, the amplitude of the fundamental
(excitation) part changes, too and – in particular – a harmonic contribu-
tion with frequency 3ω0 appears (proportional to ε). This is a so-called
higher harmonic of the fundamental frequency ω0 and since it is the
triple fold, it is the third harmonic. In Figure 2.3 both, the linear and
non-linear systems’ responses to harmonical excitation are compared.

As a result of non-linear response, the overall response signal is
distorted: it has contributions of different frequencies and, hence, it is
no more harmonic.

Generation of higher harmonics: a general consideration

An arbitrarily shaped periodic function or signal with periodicity T =
2π/ω0 is a linear combination of the fundamental harmonic part with
frequency ω0 and – depending on the actual signal shape – a number of
higher harmonic contributions, whose frequencies are integer multiples
of ω0. Contributions with other frequencies will not be found, no matter
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what the actual signal’s shape is. This is plausible, since any frequency
contribution ω that does not fulfill ω = nω0 with n ∈ Z has no mutual
periodicity with 2π/ω0. Hence, something else than nω0-contributions
would destroy the signal’s overall T -periodicity, implying the fact that
any arbitrarily shaped periodic signal must be constituted of single
harmonic contributions fulfilling ω = nω0.

This was the intuitive and vivid version of a coherence, that, of
course, can also be described more entirely and formally: a periodic
function p(t) with the fundamental frequency ω0 = 2π/T can be repre-
sented as a FOURIER series:

p(t) = p(t+ T )

=
∞∑
n=0

an cos(nω0t) + bn sin(nω0t) (2.27)

=
∞∑

n=−∞
cneinω0t (2.28)

Hence, p(t) is a linear combination of only harmonical functions (sine,
cosine) with different frequencies nω0 (n ∈ Z) and distinct amplitudes
(an, bn ∈ R). In the course of a FOURIER analysis, the periodic
signal p(t) is decomposed in its harmonical constituents, yielding the
amplitudes an and bn or cn ∈ C. These coefficients can be used
to calculate the power spectral density P (ω) (also simply called the
spectrum) of the periodic signal p(t). As argued, this ideally is a discrete
spectrum with P (ω) 6= 0 only for ω = nω0.

Think of a system with an arbitrarily shaped transfer function f(x),
driven/excited periodically by an arbitrarily shaped input x(t), with
only one, but very important, constraint: x(t) must feature T -periodicity.
Independent of the actual forms of f(x) and x(t), the response f(x(t))
then is T -periodic, too:

f(x(t)) = f(x(t+ T )) (2.29)

In this particular case, Equation 2.27 implies that the response signal
of a periodically driven system is always only composed of discrete
harmonical contributions fulfilling ω = nω0, no matter if the exci-
tation itself is harmonical or not.

Considering harmonical input x(t) (as given by 2.22), it is possible
to predict the response’s higher harmonic contributions in dependence
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of the actual transfer function f(x). In the example above, it was shown
that a third-order non-linearity leads to a 3ω0 contribution. Calculating
with a second-order non-linearity leads to a 2ω0 term, due to

sin2(y) = 1
2(1− cos(2y)), (2.30)

providing a reason to believe that there is a strict connection. The
intention of the next paragraphs is to enlighten this for the n-th order
non-linearity.

A transfer function’s non-linearity of n-th power results in a sinn(y)
term in the response (in case of x(t) = sin(ω0t)). In order to understand
the harmonical contributions introduced by an n-th power non-linearity,
the decomposition of sinn(y) into a sum of power-free sines or cosines,
as it was done in Equations 2.24 and 2.30 for n = 2, 3, is helpful. The
general decomposition rule for n ∈ Z is derived in [17]. The result is
presented here; even and odd ns must be treated separately:

for odd n :

sinn(y) = (−1)(n−1)/2

2n
n∑
k=0

(−1)k
(
n

k

)
sin((n− 2k)y) (2.31)

for even n :

sinn(y) = (−1)n/2

2n
n∑
k=0

(−1)k
(
n

k

)
cos((n− 2k)y) (2.32)

2k always is an even number. Subtracting an even number from an odd-
/even number results in an odd/even number, correspondingly. Hence,
the formulas above show that if n is odd, sinn(ω0t) is decomposable
into a linear combination of sines with only odd multiples of the fun-
damental frequency ω0, up to nω0 (for k = 0). If n is even, sinn(ω0t)
is decomposable into a sum of cosines with only even multiples of the
fundamental frequency ω0. Here, the highest appearing frequency is
nω0, too. So the harmonical contributions introduced by an n-th power
non-linearity are clarified.

The transfer function’s power series representation exactly tells
about the type and strength of the included non-linearities. The n-th
power addend in the power series of f(x) leads to a sinn(y) term in the
response, introducing – as shown above – harmonical contributions with
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frequencies up to nω0. But, if the power series contains all addends with
powers between n = 1 and n = N , this does not necessarily mean that
the response contains all higher harmonics up to Nω0: sinn(ω0t) brings
along harmonical oscillations with the frequencies (n − 2k)ω0 (for
k = 0 . . . n) and different amplitudes and phases. Hence, considering
more than one power series addend, very special transfer functions
resulting in cancellation of one or more harmonic terms are imaginable.

A much more definite conclusion of the discussion above is that
if all odd or all even power series addends are missing, there will be
no mω0 contribution to the system’s response with m odd or even,
correspondingly. This fact is important to consider for odd transfer
functions (symmetric with respect to the origin; f(x)= −f(−x)) and
even transfer functions (symmetric with respect to the x = 0 axis;
f(x)= f(−x)): an even function’s power series only contains even
power terms and an odd function is constituted of only odd power
terms.

A harmonic excitation as considered here (A0 = 0) keeps the
transfer function’s symmetry with respect to an axis or the origin (the
excitation takes place symmetrically around the point of symmetry),
leading to a response f(x(t)) with the same symmetry. As argued, this
results in only odd or only even higher harmonics in the response.

2.5.2 Ferrofluid magnetization response

The physical basis of MPI is the magnetization response M(H(t))
of magnetic nanoparticles constituting a ferrofluid. In the picture of
non-linear response theory, the input is the magnetic field H (at the
ferrofluid’s place), changing over the time t. The ferrofluid’s magneti-
zation curve M(H) is the transfer function. While input and output are
known, in MPS, the sample’s magnetization curve is the unknown
quantity. FOURIER analysis of a sample’s magnetization response
to a harmonical excitation gives information about the transfer func-
tion’s (i.e. M(H)’s) shape (power series representation), as explained
in 2.5.1. This information answers or at least helps to answer ques-
tions about the existence and type of magnetic particles in the in-
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vestigated sample.1

Transfer function: symmetry, non-linearity and Taylor series

For a classical magnetic system like a ferrofluid, it is reasonable that
M(H) = −M(−H) must always be true, because this is the one-
dimensional representation of a magnetization following the magnetic
field direction. Thus,M(H) is always symmetric with respect to the ori-
gin. As explained in part 2.4.3, the magnetization curve of a ferrofluid
constituted of noninteracting particles basically follows the LANGEVIN

function. A coth(α) − 1/α shape of course features this origin sym-
metry, because both addends do. As a consequence, the power series
expansion consists of only odd-order addends:

L(α) = coth(α)− 1
α

≈ 1
3α−

1
45α

3 + 2
945α

5 − 1
4725α

7 +O(α9) (2.33)

Equation 2.33 is the TAYLOR expansion around α = 0. At this point,
the first-order contribution and the first non-linear term are in a ratio of
15. An expansion around αmax = ±1.37225 results in a ratio of 4.5, i.e.
here the non-linearity carries more than three times more weight. αmax
is the numerical solution of

d3

dα3L(α) = 0, (2.34)

solving the problem

αmax = max
(∣∣∣∣∣ d2

dα2L(α)
∣∣∣∣∣
)
. (2.35)

Around αmax, the LANGEVIN function has the highest curvature and,
hence, exhibits the most non-linearity. This can be exploited by an
excitation of the system around αmax, leading to strong higher harmonic
generation. Incidentally, it should be remarked here, that a power series

1 In MPI, this is valid, too, but there it is the goal to obtain the information locally and
the local magnetization curve is the big unknown, as will be described later.
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Figure 2.4: Solid line: Langevin function L(α). Thick dashed line: TAY-
LOR series expansion of 99th order around α0 = 0: perfect convergence
on the interval ]− π, π[, strong divergence beyond. Dashed line: 3rd-order
series around α0 = 0. Dotdashed line: 3rd-order series around α0 = π.

expansion around α 6= 0 introduces even-order terms, due to lost
symmetry.

Now, the reader may think that a simple calculation with the nth-
order TAYLOR series of the magnetization curve enables to predict the
higher harmonic contributions up to nω0 in a ferrofluid’s magnetiza-
tion response for harmonical input. This is only true for distinct field
strength intervals, because L(α) is not an entire function: the TAYLOR

series of L(α) is not converging globally due to singularities in the
complex plane at mπi with m = −∞, . . . ,−2,−1, 1, 2, . . . ,∞.

The TAYLOR series expansion around α0 converges to L(α) only
for

|α− α0| < r, (2.36)

with r being the radius of convergence. r is given by the distance
between α0 and the nearest singularity to α0 in the complex plane. For
α0 = 0, the first equally near singularities are at ±iπ. In this case
the radius of convergence r is π. For α ∈ R and α /∈ ] − π, π[, the
series strongly diverges from L(α), no matter how many addends are
considered. L(α) and its TAYLOR series expansion around α0 = 0
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for n = 3 and n = 99 are visualized in Figure 2.4. Additionally, a
third-order expansion around α0 = π is shown.

In MPS, it is possible to keep the magnetic field strength in a distinct
interval so that α stays within an interval of convergence. Then, with
the nth-order approximation (series) of the correct magnetization the-
ory, it is possible to calculate the higher harmonic amplitudes up to the
frequency limit nω0. In MPI, as will be explained soon, quite big field
strengths are used to reach the saturation state; in both directions of the
magnetization curve. Then, no mutual interval of convergence can be
found and a calculation with the power series expansion of the magne-
tization curve is senseless, because it does not represent physics any-
more. Unfortunately, this circumstance extremely complicates and
obstructs an analytical discussion of image reconstruction schemes
in MPI.

Excitation: magnetic field irradiation

In MPS, a whole sample is excited harmonically and homogeneously
by an oscillating magnetic field. Since the magnetic field has a di-
rection, the most general approach is vector-based. ~H(t) is location-
independent in the sample’s volume and generally given by

~H(t) = ~Hoff + ~Hexc sin(ω0t). (2.37)

~Hoff , the static offset field is of crucial relevance. First of all, an ex-
citation with | ~Hoff | 6= 0 is breaking the symmetry of the response
with respect to the origin, resulting in the occurrence of even higher
harmonics, besides the odd ones. Furthermore, it can be used to max-
imize the generation of higher harmonics, as explained in the part
before. As will be explained in part 2.6, neat spatial variation of the
offset field is used to spatially resolve the magnetization response,
leading to the imaging capability in MPI. All this is easy to under-
stand for ~Hoff ‖ ~Hexc. Then, only | ~Hoff | and | ~Hexc| have to be con-
sidered, allowing a one-dimensional discussion. In all other cases
�( ~Hoff , ~Hexc) 6= zπ (with z ∈ Z), the situation gets more complex
and may exhibit exploitable advantages, as will be discussed shortly in
part 4.3.1, considering ~Hoff ⊥ ~Hexc. This topic is also treated in [18].
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Response: inductive detection of the MPS signal

After thinking about a vector-based excitation model, a vector-based
discussion of the magnetization response is required for integrity. This
is conditioned by three decisive points/assumptions:

• The magnetization ~M(t) at the time t is always aligned with the
irradiated magnetic field’s direction ~H(t). This is true, as long as
the excitation period 1/ω0 is much bigger than the superparam-
agnetic relaxation time (see part 2.3.2).

• The absolute value of the magnetization | ~M(t)| ≡ M depends
on the absolute magnetic field strength | ~H(t)| ≡ H as given by
the magnetization curve M(H).

• Inductive measurement by a coil only detects one magnetization
dimension: the projection along the coil’s axis.

This is leading to the general relation

~M(t) = M(| ~H(t)|) ·
~H(t)
| ~H(t)|

, (2.38)

with the sample’s magnetization curve M(H). The measurable signal,
an induced voltage U(t), is governed by

U(t) ∝ d

dt
Mcoil(t), (2.39)

where Mcoil is the magnetization component aligned with the coil. In
the following discussion, Mcoil(t) = M(t) is assumed. U(t) is from
now on called the MPS/MPI signal.

The one-dimensional chain of excitation, transfer function, mag-
netization response and its time derivative is visualized in Figure 2.5
for | ~Hoff | = 0. The response’s degree of distortion can be estimated
best by means of the time derivative, which is clearly not harmonic
anymore (the derivative of a harmonic signal would be harmonic, again).
Everything in the figure was obtained analytically:

U(t) ∝ d

dt
M(t) ∝ d

dt
L(A sin(ω0t))

= ω0 cot(ω0t)
A sin(ω0t)

− Aω0 cos(ω0t)
sinh2(A sin(ω0t))

, (2.40)
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Figure 2.5: Magnetic excitation with Hoff = 0 (bottom left). Transfer
function M(H) (top left). Magnetization response M(H(t)) (top right).
Response’s time derivative, which is proportional to measurable voltage
U(t), which is the MPS signal (bottom right).

with A = 6 and ω0 = 1.

Fourier analysis of the MPS signal

The next step is to obtain the detected signal’s frequency spectrum, i.e.
resolving the harmonic contributions and their amplitudes. Therefore,
the time signal has to be transformed into the frequency domain by a
FOURIER transformation F .

With the analytically gained MPS signal available (Equation 2.40),
it seems natural to go on analytically to find the exact FOURIER se-
ries coefficients an and bn (Equation 2.27) for the first few n. But the
FOURIER series coefficients’ calculation of Equation 2.40 can be con-
sidered as too difficult or even impossible1, so the analytical discussion
stops now.

Instead, U(t) – no matter if it was gained synthetically (analytical-
ly/numerically) or in an experiment – is analyzed numerically using

1 Solving the occurring integrals seemed too hard. This was not discussed further.
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a discrete FOURIER transformation (DFT). Therefore, U(t) has to be
sampled with a specific rate fsample, yielding a set of data points Ui(ti).
Put simply, the DFT transforms Ui(ti) into Ai(ωi), i.e. it resolves the
complex amplitude Ai for a specific frequency ωi. Details about pa-
rameter selection (which has to be done very carefully), frequency
resolution, detection limits and general characteristics of a DFT will be
found in the simulation part 4.1.1.

Before the DFT result of the synthetically generated MPS signal
from Figure 2.5 is presented, this point is a good opportunity to answer
an obvious question:

“We are interested in the frequency spectrum of M(t)
to get information about the magnetic properties of the
investigated sample. How does the spectrum of M(t)
translate into the spectrum of d

dt
M(t)?”

To answer this question, the time derivative of the complex FOURIER

series representation of a periodic function A(t) with periodicity T =
2π/ω0 is analyzed via Equation 2.28:

d

dt
A(t) = d

dt

∞∑
n=−∞

cneinω0t =
∞∑

n=−∞
cn
d

dt
einω0t

= iω0

∞∑
n=−∞

n · cneinω0t (2.41)

Of course, inductive detection does not change the signal’s fundamen-
tal frequency (and, thus, does not produce other frequency contribu-
tions). But, the time derivative introduces a factor of iω0n = iω to
each FOURIER component. It so to say amplifies the higher harmonic
contributions linearly with ω. This has an important consequence for
numerical simulations of the MPS/MPI signal: the frequency spectrum
of d

dt
M(t) ∝ U(t) can be obtained by simply multiplying the frequency

spectrum of M(t) with iω. Advantage: time-consuming numerical
building of the time derivative is not necessary anymore. Addition-
ally, the “iω-method” turns out to be more accurate than the simplest
numerical algorithms to build the derivative of a discrete data set.

Figure 2.6 shows the frequency spectrum of the MPS signal corre-
sponding to the signal chain in Figure 2.5. Both presented methods to
gain this spectrum were used:
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Figure 2.6: Semilogarithmic diagram of the MPS signal’s FOURIER spec-
trum F(U(t)); gained by DFT (absolute values shown). The black bars
and dots are the result of DFT( ddtM(t)); the gray dots are the result of
iω ·DFT(M(t)).

• sampling and DFT of the analytically gained d
dt
M(t)

• sampling and DFT of M(t); multiplication with iω afterward.

As expected, both results equal each other. Furthermore, Figure 2.6 is
a visual proof, attesting the non-linear response theory considerations
made above. It shows a discrete spectrum with only odd harmonics. The
highest amplitude can be found in the fundamental contribution ω/ω0 =
1; for higher n the amplitudes seem to decay almost exponentially
(almost linearly in the semilogarithmic scale).

The MATHEMATICA source code calculating the data shown in
Figure 2.6 can be found in Appendix A.1 (page 98).

Evaluation of the MPS signal’s frequency spectrum

The single magnetic moments of a biological system (formed of water,
cells and their constituents, big and small proteins, etc.) are several
orders of magnitude lower than the giant magnetic moments of single-
domain particles. As explained in part 2.3.4 (“para- vs. superparamag-
netism”), such a system’s magnetization behavior can be considered as
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linear. This assumption is valid1, especially for the low MPI/MPS exci-
tation field amplitudes Hexc, which typically are on the order of 10 mT.
Therefore, MPI is often called “background-free”: everything else than
giant magnetic moments, i.e. magnetic single-domain particles in their
function as contrast agent only contributes to the fundamental harmonic
with ω/ω0 = 1. In other words, higher harmonics in the MPS signal’s
frequency spectrum prove the existence of contrast agent within the
volume of interest. So the prime information extractable from the
MPS signal is whether there is contrast agent in the investigated
volume or not.

By performing a detailed analysis of the higher harmonic ampli-
tudes, it is possible to make much more quantitative and definite state-
ments. Consider a ferrofluid magnetization theory that correctly incor-
porates the effect of a whole set of variables like particle concentration,
magnetic core diameter (distribution), core material, excitation fre-
quency and amplitude (and maybe others) on the transfer function
M(H). Then – if all other quantities are known – it is possible to
specify the value of an unknown variable from the higher harmonic
amplitudes. In a way, MPS is an efficient way to sample the shape of
the volume of interest’s magnetization curve with high precision. On
the other hand, this means that MPS in combination with simulations
is a promising tool to test a magnetization theory for validity if the
whole set of variables is known!

1 The reader may have doubts and think of e.g. hemoglobin (the iron-containing
oxygen-transport protein in the red blood cells) and ferritin (a protein storing and
releasing iron in a controlled fashion). Hemoglobin indeed behaves para- or even
diamagnetic [19], because it is exhibiting many spatially separated iron atoms,
forming single atomic magnetic moments. Ferritin cores, which can accommodate
up to 4500 Fe(III) atoms, have an average magnetic moment of ca. 100µB ≈
O(10−22) Am2 [20], which still is several orders of magnitude lower than the
magnetic moment of applied single-domain particles (e.g. 10−18 Am2 for single-
domain magnetite cores with 16 nm diameter). If both are in the investigated volume
at the same time, the latter ones simply outstrip the higher harmonic contributions
of ferritin by orders of magnitude. Nevertheless, it at least theoretically seems to
be possible to use ferritin as contrast agent itself, by exploiting its extremely low
non-linear magnetization behavior.
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2.6 Magnetic Particle Imaging
In MPI, it is the goal to measure the spatial distribution of contrast
agent in a sample’s volume (volume of interest, VOI), i.e. the contrast
agent’s particle density ρ at location ~x.

For the step from MPS to MPI, the MPS signal has to be spatially
encoded, i.e. it has to be detected and evaluated for a small sub-volume
of the VOI. For realizing this, the basic idea is to apply a spatially
dependent offset field Hoff (~x) to the sample: |Hoff | is zero in a so-
called field-free point (FFP), but raises extremely fast with increasing
distance from the FFP, resulting in a strong offset field everywhere,
except in the FFP and its near vicinity. By doing this, the contrast
agent in the major part of the sample’s volume is magnetically saturated,
which is “switching off” higher harmonics from this VOI’s part, as
will be shown in part 2.6.1. If the whole VOI gets excited in this
configuration, the emitted signal tells about contrast agent only in the
FFP and its near vicinity; the rest of the sample is masked out.

By moving the FFP – using a temporally dependent offset field
Hoff (~x, t) – it is possible to scan the whole VOI [1]. ρ(~x), the “image”,
can then be obtained by acquiring the emitted signal over the time, fol-
lowed by an image reconstruction scheme. The specific reconstruction
algorithm depends on the actual signal acquisition method. Two of
these methods and their corresponding reconstruction schemes will be
introduced in parts 2.6.2 and 2.6.3.

A conceivable extension of the FFP principle is to realize spatial
encoding using a field free line (FFL). This implicates averaging and
results in a higher signal to noise ratio per overall acquisition time, as
pointed out in [21]. The FFL approach will not be discussed further in
this thesis.
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Figure 2.7: Solid line: a ferrofluid’s relative magnetization curve Mrel(H),
described by L(35+6 sin(t)), which actually represents magnetite particles
with d = 20 nm, excited byH(t) = 75 mT/µ0+12 mT/µ0·sin(t). Dashed
line: linear approximation of the curve for H = 75 mT/µ0.

2.6.1 Offset field for spatial encoding: “switching
off” higher harmonics

In Figure 2.6, the spectrum of the MPS signal U(t) was shown. There,
U(t) is proportional to d

dt
L(6 sin(t)) (compare to Equation 2.40). To

give the reader a feeling for actual physical quantities behind this
simple mathematical representation, this corresponds to a ferrofluid
sample made of magnetite cores (Ms = 4.8 · 105 A/m [22]) with a
diameter d = 20 nm, excited harmonically by a magnetic field H(t) =
12 mT/µ0 · sin(t) at temperature T = 300 K.

Consider this setup with an additionally applied offset field Hoff =
75 mT/µ0. Before showing the spectrum of the signal U(t) – now
simply represented by d

dt
L(35+6 sin(t))1 – a closer look to the relevant

“cut-out” of the system’s relative magnetization curveMrel(H) is useful.
It is shown in Figure 2.7: the shape is almost linear, becauseH is in the
sample’s regime of magnetic saturation, where Mrel is almost constant.

1 LANGEVIN parameter α = µ0Hm(d)/kT is ∼35 for the Hoff , d, Ms, T given.
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Figure 2.8: Semilogarithmic diagram of the MPS signal’s FOURIER spec-
trum F(U(t)); gained by DFT (absolute values shown). The black bars
and dots are the result of DFT( ddtL(35 + 6 sin(t))) (corresponding to a
sample within an offset field); the gray bars and dots are the result of
DFT( ddtL(6 sin(t))) (without offset field).

Figure 2.8 shows the strong impact of the considered offset field on
the amplitudes of the single harmonics:

• The fundamental harmonic drops by more than two orders of
magnitude: the relevant magnetization curve cut-out is almost
constant, so d

dt
M(t) drops significantly.

• Due to lost symmetry with respect to the origin of the magnetiza-
tion curve, even harmonics appear.

• The third higher harmonic decreases by almost four orders of
magnitude. The seventh is reduced by even more than seven
orders; the reduction raises extremely fast with increasing fre-
quency.

“Switching off higher harmonics” is only a descriptive term, meaning
the exceedance of an offset field strength threshold, above which the
higher harmonic contributions are so low that they vanish within the
noise of a real experimental setup. In other words, for spatial encoding
in MPI, it is sufficient to suppress the higher harmonic amplitudes from
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the sample volume’s major part to a certain degree, so that the signal
from the FFP and its vicinity is much higher. Therefore, Hoff (~x, t) is
also called selection field.

For ideal spatial encoding, the offset field’s spatial shape would ex-
hibit steps, suppressing higher harmonics from everywhere else than the
FFP. Since infinite magnetic field gradients do not exist, the threshold
described above is reached only in some distance from the FFP. This is
why always contrast agent in the FFP and its vicinity are responsible for
the signal. The size of this vicinity depends on the offset field’s slope in
all different directions off space. The dependence of a specific higher
harmonic’s amplitude on the spatially changing offset field strength is
leading to a point spread function (PSF) of certain shape and width for
this specific harmonic.

2.6.2 Frequency Mixing Method

The most intuitive implementation of the scanning concept described
above is to slowly steer the FFP through the VOI, while permanently
exciting the whole volume by irradiating a rapidly oscillating magnetic
field, as proposed in the initial MPI publication [1]. FFP steering is
either done mechanically by moving the sample within a static selection
field or by varying the magnetic field configuration over the time. The
FFP movement’s periodical repetition then defines a frequency which
is small in contrast to the excitation frequency. Due to the two differ-
ent occurring frequencies, we use the name frequency mixing method
(FMM).

Consider a one-dimensional sample, with contrast agent density
distribution ρ(x). The simplest imaginable selection field is a spatially
linear changing magnetic field (a magnetic field gradient, as produced
by a MAXWELL coil pair). Relative movement of the selection field to
the sample defines the FFP trajectory xFFP (t), as sketched in Figure
2.9. The actual trajectory – which might e.g. exhibit a constant or
harmonic velocity d

dt
xFFP (t) – is not of importance for now.

While moving the selection field, the whole sample is excited ho-
mogeneously and the emitted signal gets detected, yielding the time-
dependent amplitude of the n-th harmonic,An(t). Knowledge about the
FFP’s trajectory yields An(xFFP ). While this relation already allows
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Figure 2.9: Black dashed line: 1D MPI sample/phantom (contrast agent
density distribution ρ(x)). Red lines: Selection field (linearly increasing
around FFP) for different points in time.

for qualitative statements about the contrast agent’s spatial distribution,
a more exact and quantitative reconstruction of ρ(x) requires

• deconvolution of An(xFFP ) and the n-th harmonic point spread
function An(Hoff (x)) and

• a calibration of the system using a sample with known contrast
agent density, yielding An(ρ) which can be used to determine
ρ(An(xFFP )).

2.6.3 Drive Field Method
This method makes use of extremely fast FFP movement, i.e. movement
of the “frequency mixing method’s selection field” Hoff (~x, t). Then,
the magnetic field at a fixed point in space changes so quickly, that
voltage induction by the emitted magnetization response is as strong as
due to the excitation field’s oscillation in the frequency mixing method’s
framework. Hence, the additional excitation field is obsolete. Instead, a
static selection field (exhibiting an FFP) is considered, driven (moved)
through the VOI by a superimposed rapidly oscillating drive field,
specifying the FFP’s trajectory ~xFFP (t). Hence, Figure 2.9 is suitable
for this method’s illustration, too.
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2.6. Magnetic Particle Imaging

Using this method, which was also introduced in [1], a scan of
the whole VOI takes a lot less time than using the frequency mixing
method. With respect to a well-established terminology (that the selec-
tion field/FFP is “driven” by a “drive field”), we call this method drive
field method (DFM).

While the FMM is easier to realize in an experiment, the DFM is
the method that allows for MPI real-time applications. Therefore, at the
moment, it is the method of choice when constructing an MPI scanner,
which should be able to compete with other imaging techniques like
MRI. Actually, PHILIPS is currently building up a 3D MPI scanner for
mice, implementing the DFM [2]. On that account, our DFM recon-
struction scheme – as it is used in a simulation presented in part 4.3.2 –
is discussed in some detail now.

DFM reconstruction scheme

To be able to calculate an image from a time signal obtained by the
DFM, the MPI system’s transformation behavior – also called system
function – has to be known. The corresponding inverse transformation
applied to a measured signal then accomplishes image reconstruction.
This abstract description becomes much more comprehensible by con-
sidering an actual mathematical formalism, which is the intention of
the next paragraphs.

The mathematical formalism introduced here is based on linear
algebra: signal/time and density/space information gets discretized
and finds its representation in vectors, while the system function is
formed by a matrix operator S. The operator S, applied to a contrast
agent density distribution vector, results in an MPI time signal vector.
Consequently, the inverse operator S−1 can be used to transform a
measured time signal vector into a contrast agent density distribution
vector. The basic principle to determine S is the following:

1) Discretize the VOI in N small sub-volumes (smaller than the
desired image resolution), numbered by i = 1, 2, . . . , N .

2) Form a “delta sample”: fill sub-volume i with contrast agent of
known density ρ0.
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Figure 2.10: “1D VOI” of length L, discretized to N sub-volumes with
the centers x1...N . Dashed line: a delta sample’s contrast agent density
distribution ρds,i(x): density ρ0 in the i-th sub-volume and zero everywhere
else.

3) Run the full FFP trajectory and sample the emitted signal. The
vector of sampled values defines column i of S.

4) Repeat steps 2 and 3 for all i to obtain entire S.

These steps are explained now, using detailed mathematical notation.
A “delta sample” with known contrast agent density ρ0 in sub-

volume i is continuously described by ρds,i(~x), which is visualized for
a “1D VOI” of length L in Figure 2.10. Due to the VOI’s discretization,
a delta sample’s density distribution can just as well be given by the
vector ~ρds,i: each of the N components corresponds to the contrast
agent’s density in one sub-volume (ρ0 within the i-th sub-volume and
zero everywhere else):

~ρds,i =



0
0
...
ρ0
...
0


with component numbers

1
2
...
i
...
N

(2.42)
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Of course, this description is not limited to one dimension: all sub-
volumes of a 3D VOI can be numbered consecutively, in the order given
by the FFP trajectory ~xFFP (t).

The continuous system’s non-linear1 signal part Ads,i(t) – produced
by the corresponding delta sample ρds,i(~x) – is acquired while driving
the FFP along ~xFFP (t). Discrete signal sampling yields M time signal
data points, constituting the vector

~Ads,i =


Ads,i,1
Ads,i,2

...
Ads,i,M

 . (2.43)

This signal vector can be of arbitrary length M : the whole FFP trajec-
tory must be driven at least once, but there is no upper limit.

The signal ~Ads,i defines the i-th column of the M ×N matrix S (all
other columns are “disabled” by the zeros in ~ρds,i):

~Ads,i = S · ~ρds,i



Ads,i,1
Ads,i,2
Ads,i,3
Ads,i,4
Ads,i,5

...
Ads,i,M


= 1

ρ0
·



· · · · · · Ads,i,1 · · · · · ·
· · · · · · Ads,i,2 · · · · · ·
· · · · · · Ads,i,3 · · · · · ·
· · · · · · Ads,i,4 · · · · · ·
· · · · · · Ads,i,5 · · · · · ·
· · · · · · ... · · · · · ·
· · · · · · Ads,i,M · · · · · ·


·



0
...
ρ0
...
0



1
...
i
...
N

1 · · · i · · · N

(2.44)

Hence, after completing step four from the list above, the system func-
tion S can be assembled by putting together the N column vectors

1 I.e. Ads,i(t) must not contain the linear response, which can be accomplished by e.g.
analog filtering of the fundamental harmonic.
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~Ads,1...N :

S = 1
ρ0

 ~Ads,1 ~Ads,2 · · · ~Ads,N

 (2.45)

The entire operator S predicts the signal vector ~A for an arbitrary sample
~ρ and, thus, S−1 can be used to calculate the contrast agent density
distribution of an unknown sample from the measured time signal:

~A = S~ρ
~ρ = S−1 ~A (2.46)

Two important remarks have to be made about this method:

• This is a linear reconstruction method, presuming the MPI sig-
nal’s amplitudes A being linearly related to the contrast agent’s
density ρ. If this assumption does not match physics, quantita-
tive reconstruction of ρ values fails to a certain degree using this
method1.

• S commonly is a rectangular matrix, so numerical methods to
build the pseudoinverse have to be applied. Numerical stability
of this operation is not guaranteed, especially in case of strong
noise. Furthermore, S can get very big, leading to high computing
requirements. Consider a 3D VOI divided into 64× 64× 64 sub-
volumes, yielding N = 262, 144. E.g. M = 4096 time sampling
points acquired during FFP movement then result in a matrix with
109 entries. Numerical inversion of such huge matrices requires
a lot of random access memory. Fortunately, for a fixed MPI
scanner’s configuration, determination of S and calculation of
S−1 have to be accomplished only once.

1 MPI using the FMM is not better at this point: deconvolution methods are linear
operators, too.
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Chapter 3

Theory of particle interaction
and polydispersity

As shown in the last chapter, for comprehension of the MPI signal’s
generation in a non-ideal world, it is required to have knowledge of the
impact of two vitally important facts:

• Common ferrofluids consist of polydisperse particles, i.e. they
exhibit a magnetic core diameter probability distribution function
p(d) as defined in 2.4.1.

• Dense ferrofluids feature particle densities exceeding the (ex-
tremely) small scope of validity of the SPM (see 2.4.3). In that
case, magnetic interparticle coupling leads to deviations from the
SPM.

In this chapter, part 3.1 describes the impact of different particle sizes
and then introduces two possible parameterizations of p(d). Part 3.2
discusses the dependency of the magnetization curve the on particle den-
sity ρ and introduces a promising magnetization theory, incorporating
the effect of increasing ρ.
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3. THEORY OF PARTICLE INTERACTION AND POLYDISPERSITY

Figure 3.1: Relative magnetization of a monodisperse ferrofluid Mrel(H)
for different magnetic core diameters d (as given by L(m(d)µ0H/kT ) with
T = 300 K and m(d) as Equation 2.14 with magnetite’s Ms [22]). Dotted
line: d = 5 nm, dotdashed line: d = 10 nm, dashed line: d = 15 nm, solid
line: d = 20 nm.

3.1 Polydispersity of magnetic particles
3.1.1 Impact of different particle sizes
The initial slope of the relative magnetization of a monodisperse fer-
rofluid

∂Mrel

∂H

∣∣∣∣∣
H=0

= χinit
M∞

with M = M∞Mrel (3.1)

is directly proportional to the magnetic moment m of the particles the
fluid is constituted of: due to Equation 2.33, L(α) has an initial slope
of α/3. For constant magnetic field and temperature, α itself is directly
proportional to m, as given by Equations 2.10 and 2.11. The magnetic
moment of a particle is linearly related to its magnetized volume and
with that proportional to d3 (cf. Equation 2.14), yielding

χinit
M∞

∝ d3. (3.2)

This relation is demonstrated in Figure 3.1. There, relative mag-
netization curves for d = 5, 10, 15, 20 nm are shown. χinit/M∞ for
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3.1. Polydispersity of magnetic particles

d = 20 nm is 64 times larger than χinit/M∞ for d = 5 nm, illustrating
the fact that the regime of saturation (Mrel → 1) is reached for much
lower field strengths with increasing d. This in turn results in a much
more non-linear shape of the magnetization curve within the considered
magnetic field range (cf. 3.1). As explained in section 2.5, this has
drastic impact on the generation of higher harmonics within the
MPS/MPI signal. A more quantitative investigation is accomplished
via simulations in part 4.2.1.

In a polydisperse ferrofluid, the different magnetization curves su-
perimpose to an effective one, with their weights corresponding to their
relative fraction, as given by the magnetic core diameter probability
distribution function p(d).

3.1.2 Parameterization of magnetic core diameter
distributions

For simulating the magnetization response of a polydisperse ferrofluid,
it is necessary to parameterize the magnetic core diameter distribution
mathematically. The most intuitive and convenient approach is to
describe it by a function with only two parameters – mean value and
width of the distribution.

But which two-parametrical function matches a real distribution
best? Here, many authors refer to the lognormal distribution [23] (1975).
The lognormal distribution is considered in current MPI literature as
well [24, 25]. Another possible parameterization – which most often
occurs in theoretical publications – is an exponentially damped power
function, as used in [26]. Both functions and their properties will now
be introduced, followed by a comparative discussion.

The lognormal distribution

The lognormal distribution p1(x) with the parameters S and µ is

p1(x) = 1√
2πSx

e−
(ln x−µ)2

2S2 . (3.3)

The maximum is reached for

xmax = eµ−S2
, (3.4)
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the n-th moment of the distribution is

〈xn〉 = e 1
2n

2S2+nµ. (3.5)

The expected value E and variance V are

E = 〈x〉 = e 1
2S

2+µ (3.6)

V =
∫ ∞

0
(x− 〈x〉)2p1(x)dx = eS2+2µ(eS2 − 1). (3.7)

Exponentially damped power function (“gamma distribution”)

The exponentially damped power function distribution p2(x) with the
parameters x0 and α is

p2(x) = x−α−1
0

Γ(1 + α) x
αe−

x
x0 . (3.8)

Due to the Γ-function in the normalization term, this distribution is
often called “gamma distribution”. The maximum is at

xmax = x0α, (3.9)

the n-th moment of the gamma distribution is

〈xn〉 = Γ(1 + n+ α)
Γ(1 + α) xn0 . (3.10)

Expected value and variance are

E = x0(1 + α) (3.11)
V = x2

0(1 + α). (3.12)

Properties and justification in comparison

While S, µ, α and x0 do not have a special meaning, the relations
noted above can be used to express p1(x) and p2(x) in dependence
of E and V (using S(E, V ), µ(E, V ), α(E, V ) and x0(E, V )). Both
distributions are visualized for two specific sets of E and V in Figure
3.2. Qualitatively, both distributions look very similar.
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Figure 3.2: Gamma (solid) vs. lognormal (dashed) distribution for two
parameter sets: E = 7, V = 5 (black) and E = 15, V = 10 (gray).

Modeling reality with distribution functions like the ones introduced
above is based on quite bad arguments. There is no specific reason why
ferrofluid particle size distributions should either follow this or that
mathematical function. The actual choice of the function does not even
depend on the method of producing the particles [27]. The only definite
constraints are:

• p(d) must converge to zero for d→ 0.

• The distribution must have only one maximum (the manufactur-
ing process is assumed to work like that: the probability to create
a particle of certain size drops with increasing difference to the
predominantly produced particle size).

• The location of the maximum and the strength of the decay to its
sides must be adjustable with two parameters.

All this is fulfilled for both the lognormal and gamma distribution.
To check if a mathematical distribution matches reality, comparison

with experiments is required. Information about the magnetic core
sizes can only be obtained by magnetization measurements, leading to
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a vicious circle, as will be explained in the next part. The following
methods help to measure geometrical particle sizes:

• Photon correlation spectroscopy (PCS, based on dynamic light
scattering [28]) is capable of determining the hydrodynamic di-
ameter distribution profile of particles in a suspension. Hence,
this method measures the entire particle size (including shell in
case of ferrofluids).

• In transmission electron microscopy (TEM), the bulk core mate-
rial changes electron intensity, but TEM almost does not “see”
common particle shells (e.g. dextran); i.e. TEM allows to ex-
tract information about geometrical bulk core sizes from obtained
images.

The objective is to make a statement about the magnetic core size d,
which is the bulk core less the thin demagnetized layer (cf. 2.4.1).
Hence, PCS is completely inappropriate at this point1. TEM yields
usable but not perfect information: bulk and magnetic core size distri-
butions differ and the extraction of size information from TEM images
is imprecise. However, TEM seems to be the most suitable indepen-
dent method for gathering statistical data about a size distribution that
matches p(d) well.

In [27], the authors considered TEM data of several magnetite fer-
rofluid samples. For each sample’s data, they extracted the first and
second moment and used them to fit lognormal and gamma distribu-
tions, so that mean value and variance of both functions coincided with
experimental data. Comparison of higher order moments of the two
fitted distribution functions to corresponding moments of the TEM data
revealed that the moments of higher order of the lognormal distribution
strongly overshoot the real moments (e.g. by a factor 2-3 for the sixth
moment), while the moments of the gamma distribution seem to match
reality much better2. The difference between the higher order moments
of both distribution functions is visualized in Figure 3.3.

1 Often, the shell of a magnetic particle is much thicker than the magnetic core itself.
Therefore and due to shell thickness variations, it is much too unreliable to correlate
magnetic core diameter and hydrodynamic diameter.

2 The exponential decay of the gamma distribution for big arguments is stronger than
the one of the lognormal distribution.
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Figure 3.3: Difference ∆ between n-th moment (〈xn〉) of lognormal dis-
tribution and the n-th moment of the gamma distribution for E = 15 and
V = 10 (as shown in Figure 3.2).

Considering χinit ∝ M∞d
3 (cf. Equation 3.2) and M∞ ∝ m(d)

leads to

χinit ∝ d6. (3.13)

Thus, for predicting the magnetic properties of a ferrofluid, the accuracy
of p(d) in higher order moments is essential. Therefore, the gamma
distribution is the preferable choice, which clearly should be adopted in
the field of MPI, too.

3.2 Magnetic particle coupling in dense
ferrofluids

3.2.1 Impact of interparticle coupling
As pointed out in 2.4.3, the single particle model is valid only for
particle densities ρ→ 0. With increasing ρ, a single magnetic moment
is affected more and more by surrounding magnetic moments via dipole-
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Figure 3.4: Visualization of the impact of increasing local particle den-
sity ρ on a ferrofluid’s magnetization curve: the initial susceptibility χinit
increases with ρ, while the saturation magnetization M∞ is constant (it
only depends on the absolute amount of substance in the volume of interest,
which is not changed by local ρ variations).

dipole interaction. The impact of this effect on the magnetization curve
of a ferrofluid is assessable:

• The saturation magnetization M∞ is reached when all magnetic
moments are aligned with the external field. Hence, it is not
affected by particle density variations. It only depends on the
absolute amount of magnetic substance within the volume of
interest.

• Single magnetic moments “seeing each other”, support each
other in the process of alignment. Thus, increasing ρ leads ti
a steeper magnetization curve and saturation is reached for a
weaker external magnetic field.

• The point above implies the magnetization curve M(H, ρ) being
non-linear dependent on ρ (in contrast to the SPM, cf. part
2.4.3). In particular, χinit is increasing with ρ, which is verified
experimentally in [29].
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This coherence is visualized in Figure 3.4.
From the discussion above it is clear that the particle density ρ must

have huge impact on the amplitudes of the higher harmonics within
the MPI/MPS signal: increasing ρ leads to a larger curvature of M(H)
which means stronger non-linearity and – with that – stronger gen-
eration of higher harmonics. Furthermore, the effect of increasing
particle concentration on the magnetization curve of a ferrofluid quali-
tatively is very similar to the effect of increasing particle diameters:
both result in higher χinit and – with that – stronger non-linearity and
higher harmonic generation.

3.2.2 Magnetization theories for concentrated fer-
rofluids and magneto-granulometric analysis

Development of a ferrofluid magnetization theory properly taking ac-
count of interparticle interactions is the objective of many theoretical
works. This topic has been discussed for at least 20 years (e.g. in [26],
[27], [29], [30], [31], [32], and [33]). In the course of time, different
models were proposed; each of them more or less valid in different
concentration and temperature ranges.

Validity check: Vicious circle of polydispersity

Comparison with experiments enables to check a magnetization theory
for validity. But for meaningful comparison, the theory must incorpo-
rate the same p(d) as used in the experiments. Otherwise, interparticle
interaction effects are hidden behind a wrong magnetic core diameter
distribution and a safe statement about the theorie’s validity is not pos-
sible. Hence, p(d) of the ferrofluid used in the experiments must be
known as good as possible. As stated in part 3.1.2, magnetic core size
information can only be obtained by magnetization measurements. In
particular, by a so-called magneto-granulometric analysis (MGA). In
anticipation of the more detailed introduction in the next part, MGA
requires an exact magnetization theory to deliver precise information
about p(d). This sounds very adverse, but nevertheless there is a loop-
hole from this vicious circle, allowing the validation of a magnetization
theory, as will be explained right after the introduction of MGA.
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Magneto-granulometric analysis

Two of the first papers introducing MGA in the 1970’s were [23] and
[34]. The basic idea is to extract two characteristical quantities – like e.g.
M∞ and χinit – from the experimentally gained magnetization curve of
a ferrofluid. A magnetization theory then provides relations between
the measured quantities and the n-th moment 〈mn〉 of the ferrofluid’s
magnetic moment distribution: M∞(〈m〉) and χinit(〈m2〉) in case of
the example above. Measurement and theory in combination would
then provide 〈m〉 and 〈m2〉, yielding two moments of p(d); 〈d3〉 and
〈d6〉. Assuming a two-parametrical distribution function p(d) like the
lognormal or gamma distribution (part 3.1.2), these two moments define
both parameters (via Equations 3.5 and 3.10, respectively).

Obviously, the validity of the MGA result is not easy to assure. It
depends on

• the precision of the experiment,

• how well the theory describes reality,

• and validity of the assumed distribution function.

In spite of all the uncertainties named above, MGA is a convenient tool
to check if a magnetization theory Mtheo correctly includes the particle
density effect. Consider the following experiment:

A very dense ferrofluid is split up in several samples. Each of them
is being diluted to a certain degree, resulting in ferrofluid samples

• covering a huge range of particle concentration

• and all having the same magnetic core diameter distribution p(d).

An MGA upon all the samples using Mtheo must result in the same
distribution parameters for each of the samples, if Mtheo is correctly
incorporating the density effect [27].

3.2.3 Second-order modified mean-field theory
Over the time, several authors developed a whole bunch of different
models taking account of interparticle interactions. In [33], a publi-
cation from 2007, six important theories have been tested for validity
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via MGA and via comparison with molecular dynamics / monte carlo
simulations. The only theory fulfilling the “MGA-criterion” (as de-
scribed above: same p(d) data for all concentrations) is the so-called
second-order modified mean-field theory (MMF2), which was initially
presented in [32] (2001).

The authors performed a rigorous analysis of the two and three-
particle correlation functions in dipolar fluids incorporating the dipole-
dipole interaction energy and were able to – among others – generate an
expression for the effective field He properly representing their model
in terms of the SPM:

MMMF2(H, ρ) = MSPM(He(H, ρ), ρ) (3.14)

with He = H + 1
3MSPM(H)

(
1 + 1

48
dMSPM(H)

dH

)
(3.15)

Expanding this using Equation 2.18 clearly shows that the MMF2
magnetization is non-linearly dependent on ρ:

MMMF2(H, ρ) = ρMs

〈
L
(
µ0m(d)He

kT

)〉
(3.16)

He(H, ρ) = H + 1
3Msρ

〈
L
(
µ0m(d)H

kT

)〉

·
(

1 + 1
48Msρ

d

dH

〈
L
(
µ0m(d)H

kT

)〉)

Terms of the order ρ and ρ2 appear within the LANGEVIN function.
As stated in [32], MMF2 very accurately describes the total mag-

netization curve of dense ferrofluids (up to ∼ 18 % magnetic phase
fraction of the total volume). This was verified in [33], stating that
MMF2 is a theory with very good overall reliability, applicable in quite
wide concentration and temperature ranges.
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Chapter 4

Signal characterization by
simulation

This chapter is about the investigation of the impact of particle size and
density on MPS/MPI via numerical simulations, based on considera-
tions and theory introduced in chapters 2 and 3.

4.1 Simulation methods
All simulations were accomplished using either MATLAB (a numerical
computing environment by THE MATHWORKS) or MATHEMATICA (a
computer algebra system by WOLFRAM RESEARCH). Regarding MPI,
both have their advantages.

MATLAB allows for easy implementation of the vector character-
istics of the magnetic field configuration, needs short source code and
can perform as well as machine-oriented code. In MATHEMATICA,
numerical noise can be reduced as much as desired by using arbitrary-
precision arithmetics at the cost of performance. This can be useful,
because the higher harmonic amplitudes in MPI have a very high dy-
namic range, which can collide with MATLAB’s double precision: it
quickly happens that numerical noise dominates and breaks an MPI
simulation implemented in MATLAB1.

1 In particular in case of noise amplification due to the “iω-method” (cf. Equation
2.41), which linearly intensifies the noise of the result of a discrete FOURIER
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input discretization

response
calculation

DFT

with -method

Figure 4.1: Flowchart of the execution performed within each MPI/MPS
signal simulation: after formal definition of the input signal H(t), it is
discretized to the vector Hi(ti), which is put into a magnetization theory
M(H), yielding the response Mi(ti). DFT(Mi(ti)) and multiplication
with iω (cf. Equation 2.41) provides a discrete spectrum proportional to the
frequency spectrum Uj(ωj) of the detectable output voltage.

4.1.1 Proper signal sampling and DFT in Mat-
lab/Mathematica

Core components of each MPS/MPI signal simulation are discrete input
signal creation, response building and discrete FOURIER transforma-
tion (DFT), as visualized in Figure 4.1. The input sampling parameters
during the “input discretization step” have to be chosen very carefully,
because they define the discretization characteristics of Mi(ti), which
is the DFT input vector. It specifies the complexity of the DFT and the
quality of its result and – with that – the duration and goodness of the
simulation of the amplitudes of the higher harmonics. Understanding
the output vector of DFT is complex, too: value interpretation, nor-
malization, and frequency assignment require understanding and care.
Helpful literature are the articles [35] and [36].

The following parts discuss optimal sampling and DFT output inter-
pretation methods for MPI and show short FOURIER analysis examples
in MATLAB and MATHEMATICA based on these methods.

transformation (DFT) with increasing frequency.
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DFT input: optimal sampling method

A discretization/sampling method is entirely defined by ti, the set of
points in time at which the input signal is sampled. It turns out that
the ti of an optimal DFT input vector for MPI/MPS simulations are the
following ones:

ti = 0,∆t, 2∆t, . . . , T −∆t (4.1)

with T = 2π/ω0 = 1/f0 being the period of the sampled input signal
and ∆t being the sampling interval fulfilling

∆t = T

m
with m ∈ N. (4.2)

A DFT calculates the spectrum of the infinite periodic continuation
of the input. With prior knowledge of the input signal’s periodicity
T , the so-called leakage effect can be eliminated by perfect DFT
windowing1, which is realized via Equation 4.1.

The output vector of a DFT always is as long as its input dataset:
the number of data points in both, input and output, is N . The sampling
frequency fs = 1/∆t together with N defines the frequency resolution
∆f of the DFT (the frequency distance between two neighboring output
data points) and the highest reliably detectable frequency flimit:

∆f = fs
N

and flimit = fs
2 −∆f (4.3)

The special sampling method as given by Equation 4.1 only analyzes
one period. This leads to N = m and, hence, ∆f being independent on
the sampling frequency:

∆f = fs
N

= m

NT
= 1
T

= f0 (4.4)

1 Signal sampling is limited to a finite interval of time, which is equivalent to applying
a rectangular so-called window function to the real signal. Consider a T -periodic
signal. If the window length L is not exactly L = nT − ∆t (with ∆t being the
sampling interval and n ∈ N), the infinite periodic continuation of the gathered data
does not match the real signal. Instead, sudden discontinuities are introduced. In a
DFT’s output they manifest themselves in high frequency terms not occurring in the
real signal, and too low real frequency contributions (“leakage effect” [37]).
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Thus, the discussed sampling method can (only) detect contributions
with frequencies

0, f0, 2f0, . . . , nmaxf0 (4.5)

with nmax being the nearest integer less than or equal to m/2− 1, as
given by flimit. MPI theory forces all other (non higher harmonic)
contributions to be zero, so the sampling method given by Equation
4.1 uses the smallest data set possible to obtain a specific amount of
information. Therefore, the method has maximum performance.

DFT output: interpretation

For DFT output analysis, at first the data points itself have to be assigned
to frequencies: the first output data point with index 1 belongs to
frequency 0, the increment is ∆f (as given by Equation 4.3) and the
last data point with index N belongs to fsample −∆f .

The entire output data set contains redundant information: each
value is a complex number c, containing information about the an and
bn of Equation 2.27. All information gained by DFT can be found from
index 1 to the nearest integer less than or equal to N/2 + 1; other values
with higher indices are complex conjugates of values from the first half,
so they do not contain new information.

Interpretation of the data values is generally quite complex. But,
assuming the input signal with fundamental frequency 1/T = f0 to be
perfectly sampled as described above and assuming all contributing
oscillations starting with the same phase, makes interpretation very
easy: consideration of |c| together with proper normalization then
yields a correct FOURIER analysis, providing the amplitudes An of the
higher harmonics with frequency nf0.

The “proper normalization” depends on the actual DFT implemen-
tation. Commonly, the data has to be divided by N and multiplication
with 2 does justice to the fact that amplitudes are split up evenly between
the first and the second half of the output of the DFT1.

1 For correct determination of an offset (at frequency 0), the first data point of the
output must not be doubled, because it does not have a symmetric counterpart.

54



4.1. Simulation methods

DFT in Matlab: minimal example

MATLAB’s actual DFT implementation is provided by the function
fft(), based on the so-called “Fastest Fourier Transform in the West”
(FFTW) [38] and exhibits the complexity O(N logN). Up next, there
is a minimal example how to use and wrap this function to perform a
proper FOURIER analysis of the signal

a(t) = 2 sin(ω0t) + sin(2ω0t) + 5 sin(3ω0t); f0 = ω0

2π = 1, (4.6)

based on the considerations made above:

• Define sampling constants for realization of the sampling method
given by Equation 4.1:
f_0 = 1; % fundamental frequency
f_sample = f_0*8; % sampling frequency
L = 1/f_0; % length of sampled signal: 1 period
dt = 1/f_sample; % sampling interval
t = (0:dt:L−dt); % vector containing the sample times
N = length(t); % length of DFT input and output
df = f_sample/N; % freq step between two output points

• Build frequency vector for output interpretation:
freqs = (0:df:f_sample−df);

• Sample signal (build DFT input vector ai(ti)):
w_0 = 2*pi*f_0;
A = 2*sin(w_0*t) + sin(2*w_0*t) + 5*sin(3*w_0*t);

• Accomplish normalized DFT (as described above):
freq_spectrum_A = 2*abs(fft(A))/N;

• Examine amplitude-frequency-pairs for relevant part of output:
freq_spectrum_A(1:floor(N/2+1))
freqs(1:floor(N/2+1))

ans = 0.0000 2.0000 1.0000 5.0000 0.0000
ans = 0 1 2 3 4
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Hence, the A1, A2, A3 of the higher harmonics of signal a(t) were
correctly computed (limited by MATLAB’s internal precision). Imple-
mentation of the “iω-method” (cf. Equation 2.41) to determine the
amplitudes of the higher harmonics of d

dt
a(t) is as follows:

• Multiply each DFT output data point with iω; examine output:
freq_spectrum_dt_A = 2*abs(1i*2*pi*freqs.*fft(A))/N;
freq_spectrum_dt_A(1:floor(N/2+1))
freqs(1:floor(N/2+1))

ans = 0 12.5664 12.5664 94.2478 0.0000
ans = 0 1 2 3 4

These values correspond to the analytical results of the amplitudes of
the higher harmonics of d

dt
a(t): A1 = A2 = 4π, A3 = 30π.

DFT in Mathematica: minimal example

Now, the same signal a(t) (Equation 4.6) is analyzed using MATHE-
MATICA. Here, the DFT is provided by the Fourier[] function. Without
knowing details about the internals, it is exhibiting the same complexity
as MATLAB’s fft() function (O(N logN)).

The implementation of the analysis is completely analogous to the
one in MATLAB, but features arbitrary-precision calculation:

• Define sampling constants and build frequency vector (exact):
f0 = 1;
fsample = f0*8;
L = 1/f0;
dt = 1/fsample;
t = Table[t,{t,0,L−dt,dt}];
n = Length[t];
df = fsample/n;
freqs = Table[f,{f,0,fsample−df,df}];
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• Sample signal (values are stored in exact form); accomplish
normalized1 DFT (output is calculated in 200-digit precision):
w0=2*Pi*f0;
A[time_] = 2*Sin[w0*time]+Sin[2*w0*time]+5*Sin[3*w0*time];
Asamples = Map[A,t];
Aspectrum = 2*Abs[Fourier[N[Asamples,200],

FourierParameters−>{1,−1}
]

]/n;

• Examine amplitude-frequency-pairs2:
Part[N[Chop[Aspectrum,10^−190],4],1;;Floor[n/2+1]]
Part[N[freqs,4],1;;Floor[n/2+1]]

{0, 2.000, 1.000, 5.000, 0}
{0, 1.000, 2.000, 3.000, 4.000}

• Calculate and examine spectrum of d
dt
a(t):

dtAspectrum = 2*Abs[I*2*Pi*freqs*
Fourier[N[Asamples,200],

FourierParameters−>{1,−1}
]

]/n;
Part[N[Chop[dtAspectrum,10^−190],6],1;;Floor[n/2+1]]
Part[freqs,1;;Floor[n/2+1]]

{0, 12.5664, 12.5664, 94.2478, 0}
{0, 1, 2, 3, 4}

Like in the MATLAB example, all results are as analytically ex-
pected. Additionally, the numerical precision of the result can be chosen
as required for further processing. But this decreases the computing
performance: In a benchmarking test3, 100 independent runs of sam-
pling (100000 data points), DFT and “iω-method” in MATHEMATICA

took 840 s (with 200-digit precision, and 750 s with 50-digit precision),

1 The specific FourierParameters setting allows for division by N for proper nor-
malization (hence, it creates same behavior as in MATLAB).

2 Every output data value smaller than 10−190 is considered as 0.
3 Using one core of an INTEL P8800 CPU (2.66 GHz) and 4 GB random access

memory.
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while MATLAB approximately needed 1.3 s (IEEE double-precision
[39]: 52 bit / 10−16).

4.2 Magnetic Particle Spectroscopy
4.2.1 Impact of magnetic core diameter
The qualitative discussion in part 3.1.1 revealed that the amplitudes An
of the higher harmonics in MPS/MPI heavily depend on the magnetic
core diameter d of the particles. This relation was investigated quan-
titatively via several MPS simulations using different magnetic core
diameters.

As stated in 2.5.2 (“Ferrofluid magnetization response – Fourier
analysis of the MPS signal”), theAn seem to decay almost exponentially
for higher n. Consequently, in each simulation with a specific d, the
decay of An with increasing n can be fit to the model

An = Ce−kn. (4.7)

The objective is to investigate the relation between the diameter d and
the strength exponential decay of the higher harmonics, as given by
the fit parameter k. Therefore, many simulations with changing d have
been performed, leading to k(d).

95 different diameters between dmin = 2.5 nm and dmax = 50 nm
were simulated. Within each of the simulations, the exciting magnetic
field has an amplitude of 5 mT. The “ferrofluid sample” is considered
to consist of monodisperse magnetite particles, with their magnetic mo-
ment given by m(d) (Equation 2.14). The sample’s response analyzed
spectroscopically is the relative magnetization as given by the SPM.
Hence, total amount of substance and density effects are masked out
and comparison of different responses for different d exhibits the pure
impact of d on the An. For each d, Equation 4.7 has been fitted to the
An for n = 3, 5, . . . , 13.

Figure 4.2 shows two example fits, visualizing maximum and mini-
mum agreement of data and model between dmin and dmax: the fit for
d = 5 nm agrees very well with the exponential model; the agreement
of the fit for d = 32 nm is still acceptable. Thus, evaluation of k(d) is
justified.
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Figure 4.2: Dots: n-th higher harmonic amplitude An, obtained by simu-
lation of the relative magnetization of a ferrofluid (particle core material:
magnetite; magnetic core diameter d: 5 nm (left) and 32 nm (right); excita-
tion field amplitude: 5 mT). Solid lines: Exponential fits based on Equation
4.7. From many fits for 2.5 nm ≤ d ≤ 50 nm the left graph shows one of
the best and the right one shows one of the worst fits.

Figure 4.3 shows the result of the simulation: for constant envi-
ronmental conditions1, the strength of the exponential decay seems to
depend on d exponentially itself. Thus, signal optimization (inten-
sification) by particle size enlargement definitely does make sense
in a range where k(d) rapidly changes with d (below d ≈ 15 nm in
this case). For larger d, a trade-off is required between small signal
enhancements and a potentially large effort related to further particle
enlargement.

The source code of the simulation can be found in Appendix A.2
(page 101).

4.2.2 Impact of particle concentration
This section is about the investigation of the dependency of MPS on the
concentration of magnetic particles. These investigations are based on
the MMF2 theory, as introduced in part 3.2.3.

1 In particular for constant excitation field amplitude, which certainly has a consider-
able impact at this point.
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Figure 4.3: Points: Strength k of the exponential decay of the An (cf.
Equation 4.7) in dependence of magnetic core diameter d (obtained by MPS
simulations with constant experimental setting). Line: Exponential fit of the
data points.

Density-concentration conversion

Throughout the thesis, the terms “particle density” and “particle con-
centration” were used as synonyms. But there is a useful distinction:
the density ρ (as used in magnetization theory formulas for the SPM
(2.18) and MMF2 (3.16)) denotes the magnetic phase fraction of the
total volume and therefore is defined between 0 and 1 (with unit 1),
with 1 corresponding to the bulk material. The concentration c however
specifies the amount of magnetic substance per volume in mol/l. While
ρ is useful in theoretical works, declaration of concentrations in mol/l
is well-established in papers regarding real applications of magnetic
particles. Therefore, simulation results are given in dependence of c,
while internal calculations are done using ρ.

Conversion from c to ρ and the other way round can be done easily
by knowledge of the molar volume Vmol of the considered substance:

c(ρ) = 10−3 ρ

Vmol
(4.8)

Vmol is calculated from the density (mass per volume) and molar mass
of the substance. The molar mass is obtained by multiplying the AVO-
GADRO constant with the molecular/atomic mass of the substance (as

60



4.2. Magnetic Particle Spectroscopy

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8

10

12

Ρ

c

Figure 4.4: Conversion of particle density ρ [1] into concentration c [mol/l],
as given by magnetite’s density (mass per volume) and molar volume. Solid
line: Iron concentration. Dashed line: magnetite concentration.

given by a periodic table). For magnetite (Fe3O4, density 5.2 g/cm3

[40]), this results in

Vmol,magnetite = 44.5 · 10−6 m3

mol
. (4.9)

Even if the magnetic core material used in an experiment is magnetite,
people mostly are interested in the iron concentration cFe, which is 3
times cFe3O4 .

For being able to classify a given c or ρ, their relation is visualized
in Figure 4.4. The range of ρ presented corresponds to the scope of
validity of MMF2.

Global concentration vs. local concentration

Concentration or density is always per volume. For investigation of
the concentration effect, the size of the volume considered to define
a concentration has to be clear. There, two types of definitions have
to be separated carefully: the “global concentration” and the “local
concentration”.

In the magnetization formulas 2.18 and 3.16, the term ρMs gives
the saturation magnetization M∞ of the ferrofluid, corresponding to
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the absolute amount of magnetic substance within the total volume
of the sample. So, there, ρ is the global (or mean) particle density.
Only in the special case of a homogeneously mixed ferrofluid, the
global concentration is the same as the local concentration within each
conceivable sub-volume containing at least a few particles. This
case is considered by the magnetization theories. Therefore, the total
magnetization as given by the SPM linearly depends on ρ, which is
proportional to the total amount of magnetic substance and – with that –
to M∞.

In reality, the local particle density may fluctuate within the consid-
ered volume; which is without consequence when calculating M∞. The
effect of local particle concentration fluctuations on the magnetization
of the whole sample is investigated in this part.

For investigation of this effect by simulation, relative magnetiza-
tions are analyzed, so that the considered total volume of the sample is
of arbitrary size, leading to c or ρ always denoting a local concentration.
Evaluation of the relative magnetization as given by the SPM or MMF2
is equivalent to analyzing ferrofluids with homogeneously distributed
particles and with a constant total amount of magnetic substance (i.e.
shrinking the ferrofluid volume while increasing its concentration).

Impact of local concentration on MMF2 magnetization curve

Plotting the relative magnetization curve of a monodisperse ferrofluid
as given by MMF2 for different particle concentrations visualizes the
pure local concentration effect. This was accomplished in MATLAB,
using the MMF2 implementation shown in Appendix B.1 (page 108).

The result is presented in Figure 4.5. MMF2 exhibits an increasing
initial susceptibility χinit with increasing c, as qualitatively predicted in
3.2.1. Therefore, curvature (non-linearity) strongly depends on c. How
this impacts MPS is analyzed quantitatively in the next part.

The graph shows the convergence of MMF2 to SPM for c → 0.
Furthermore, it allows for an estimation of the error of the SPM with
increasing c.
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Figure 4.5: Relative magnetization of a monodisperse ferrofluid (made of
magnetite particles with magnetic core diameter d = 15 nm), as given by
MMF2 (Equation 3.16) for different local particle densities translated to
local iron concentrations cFe (cf. Equation 4.8). The range of H shown
corresponds to 0 to 0.03 T.

Effective particle diameter (and cluster particles)

As explained in part 3.2.1 (“Impact of interparticle coupling”), the
change of the magnetization curve due to the local concentration effect
is qualitatively similar as due the change to enlargement of the mag-
netic core diameter. This was investigated quantitatively by fitting the
SPM magnetization curve to the MMF2 curve for a given real particle
diameter and (high) density, using not the real, but an effective diameter
deff within the SPM as fit parameter. This procedure is visualized in
Figure 4.6.

The concentration used within the MMF2 calculation is cFe =
12 mol/l. While it is unlikely to find a ferrofluid with such a high
global concentration, 12 mol/l or much more are conceivable in very
localized environments, e.g. in particle clusters, consisting of many
small particles which are forming an object that – viewed from some
distance – has the same magnetic properties as a single magnetic particle
with an effective diameter deff .

The magnetic core diameter within the MMF2 calculation – which
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Figure 4.6: Solid line: relative magnetization curve Mrel(H) for d =
15 nm and cFe = 12 mol/l, given by MMF2. Dashed line: Mrel(H) as
given by SPM for d = 15 nm. Dotdashed line: Mrel(H) given by SPM
for deff = 22.7 nm (effective diameter, minimizing the integral over the
squared difference between SPM and MMF2 magnetization curve).

can be considered as the real diameter – was chosen to be 15 nm.
In contrast, the dotdashed line in Figure 4.6 is the SPM curve for
deff = 22.7 nm. It minimizes the squared difference1 between the SPM
and MMF2 magnetization curves, integrated over the relevant magnetic
field range (in this case, this is the range shown in the plot).

The MATHEMATICA source implementing this calculation is shown
in Appendix A.3 (page 104).

As can be seen in the initial MPI publication [1], this effect can
have very severe consequences:

“Given that the particles have a reported diameter of
4 nm, [...]. [...] The experimental data fit well, assuming
that particles of 30 nm diameter are responsible for the
signal.”

1 The effective diameter deff as defined here depends on the fitting method. The
“method of least squares” was chosen, because it is the standard approach for
curve/data fitting. It effectively prevents big differences in a few places, but allows
for very small differences everywhere.
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Figure 4.7: Schematic picture of a cluster particle containing many small
magnetic cores, tightly packed within a polymer shell.

The authors used Resovist1, which consists of clustered particles: each
of them is made of many small particles (3 − 5 nm diameter). These
are tightly packed in a dextran shell, resulting in a hydrodynamic di-
ameter of about 60 nm [41], as illustrated in Figure 4.7. Regarding this
extremely high local particle concentration, it is clear that the effective
particle diameter of RESOVIST vastly deviates from the diameter of
a single core. In 2009, another group analyzing the MPS signal of
RESOVIST reported an effective particle diameter of about 15 nm [24]
without further explanation.

Impact of local particle concentration on MPS

To investigate the pure impact of local concentration on the higher
harmonic amplitudes An in MPS, the best choice is to simulate the
relative magnetization response of a monodisperse ferrofluid, so that
total amount of substance and particle diameter effects are masked
out. Based on MMF2, this was accomplished with MATLAB for the
harmonics 3 to 9 of a ferrofluid containing particles with d = 15 nm,
getting excited due to an irradiated field with 5 mT amplitude. For
comparison, the simulation was done using the SPM, too.

The result of the simulation is shown in Figure 4.8. As expected
– due to the paramagnetic nature of the SPM – the An simulated via
SPM do not depend on local concentration changes. In contrast, the

1 A commercially available contrast agent made of magnetite SPIOs. See [41] for
details.
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Figure 4.8: n-th higher harmonic amplitude An in dependence on local
iron concentration cFe, obtained by simulation of the relative magnetization
response of a ferrofluid based on MMF2. Simulation performed for d =
15 nm and 5 mT excitation field amplitude.

incorporation of particle coupling effects by means of MMF2 leads
to a drastic enhancement of An with increasing c. The enhancement
per ∆c grows with n, i.e. higher harmonics with larger n are affected
more. The total amplitude enhancement can span orders of magnitude
for (considerably) high c.

Since MMF2 theory provides realistic results, the graph shows
that the unmodified SPM1 is inapplicable for predicting higher har-
monic amplitudes in case of moderate and high local particle con-
centrations. In biological applications, local particle densities signifi-
cantly exceeding the scope of validity of the SPM will not be uncom-
mon. A prime example – leading to iron concentrations of 0.2 − 5
mol/l – is the agglomeration of magnetic particles in cells [42].

In terms of the SPM, the An can only vary due changes in the total
amount of magnetic substance, which can be modeled by a constant
factor each An gets multiplied with2. Therefore, the ratio of different

1 Using the real particle diameter.
2 This effect can not be seen when simulating the relative magnetization, which is

independent on total amount of substance changes.
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Figure 4.9: n-th higher harmonic amplitude An normalized to A3 in de-
pendence on local iron concentration cFe, obtained by simulation of a
ferrofluid’s relative magnetization response based on MMF2. Simulation
performed for d = 15 nm and 5 mT excitation field amplitude.

An is always constant. A very important characteristic introduced
by interparticle coupling is that the ratio of two An changes with
varying particle concentration. This effect is visualized in Figure 4.9,
showing the harmonics 3 to 9 again, but this time normalized to A3.

The ratio of the 3rd and the 5th/7th/9th amplitude drastically changes
with increasing concentration. In general, the MMF2 curves “move
together” with rising cFe (this is observable in Figure 4.8, too), leading
to the conclusion: the higher n, the larger the amplitude change
∆An due to the same local particle concentration change ∆c. This
again shows the similarity of the impact of local particle concentration
and of particle diameter: it means that the exponential decay strength
of An (to higher n) decreases with rising local particle concentration.
As shown in 4.2.1, an increasing magnetic core diameter qualitatively
has the same effect.

This behavior is very useful for detecting changes of the local
particle concentration in an experiment: if the ratio of two ampli-
tudes An1/An2 significantly differs between two measurements of the
same ferrofluid, the local particle concentration must have changed.
This fact is verified experimentally in 5.1.2. Furthermore, the relation
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can be used for a practical application, as described in chapter 6.

4.3 Magnetic Particle Imaging
4.3.1 Offset field parallel / perpendicular
As brought up in 2.5.2 (“Ferrofluid magnetization response – Excitation:
magnetic field irradiation”), non-parallel alignment of the offset field
~Hoff and excitation field ~Hexc may exhibit advantages for MPI. The
angle between the fields is an additional degree of freedom introducing
new physical aspects. One aspect is to avoid potentially disturbing
π phase jumps in the point spread function (PSF) of conventional
MPI ( ~Hoff ‖ ~Hexc) using perpendicular alignment: ~Hoff ⊥ ~Hexc, as
proposed in [18]. This was examined by means of simulation.

The dependence of a specific higher harmonic amplitude An on
the offset field strength | ~Hoff | is leading to a PSF of certain shape for
this specific harmonic, considering the spatial dependency of the offset
field. This can be explained using the frequency mixing method (2.6.2):
The excitation ~Hexc(t) = ~Hexc sin(ω0t) can be taken into consideration
separately from the spatially dependent offset field ~Hoff (~x). The n-th
higher harmonic resulting from the excitation varies with the offset field
strength (cf. 2.6.1), leading to An(| ~Hoff |). Together with ~Hoff (~x)1,
this dependency defines the PSF of the n-th harmonic.

In the simulation, A3(| ~Hoff |) was compared for the parallel case
~Hoff ‖ ~Hexc and the perpendicular case ~Hoff ⊥ ~Hexc. The parallel
case is

~Hexc(t) =

 0
0

Hexcz

 sin(ω0t) and ~Hoff =

 0
0

Hoffz

 . (4.10)

The perpendicular case is

~Hexc(t) =

 0
0

Hexcz

 sin(ω0t) and ~Hoff =

 0
Hoffy

0

 . (4.11)

1 The actual relation between ~Hoff and ~x does not matter here, but can be imagined
as constant field gradient in a certain direction.
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Figure 4.10: Left: Third higher harmonic amplitude A3 (encoded by color)
in dependence of parallelly aligned offset field ~Hoff and excitation field
~Hexc. Right: A3 in dependence of perpendicularly aligned ~Hoff and ~Hexc.

The magnetization response is detected in direction of excitation (z-
direction).

In both cases, A3(Hexcz , | ~Hoff |) was analyzed for 400 different
excitation field amplitudes (between 2 and 20 mT) and 400 offset field
strengths (between −60 and 60 mT), using the relative SPM magnetiza-
tion for magnetite particles (d = 15 nm).

The result, which is visualized in Figure 4.10, shows distinct dif-
ferences between the two cases. For fixed Hexcz , A3 has roots along
the Hoffz direction (parallel alignment). They do not occur for perpen-
dicular alignment. Actually, by going through a root of the amplitude,
a phase jump of π takes place, as revealed by evaluation of the ampli-
tude and phase of the DFT result. Hence, as given by ~Hoff (~x), it is
possible that signal emission of two different locations happens with
equal amplitudes and a π phase shift. Simultaneous detection then
yields destructive interference, resulting in signal cancellation or at

69



4. SIGNAL CHARACTERIZATION BY SIMULATION

least damping. It is conceivable – but has to be investigated – that this
effect plays a considerable role in real MPI applications.

As a matter of fact, in the parallel case all higher harmonics An
exhibit one or more π phase jumps with changing | ~Hoff |. This never
occurs in the perpendicular case, so that destructive interference is not a
problem here. But the perpendicular configuration has disadvantages or
at least particularities, too. Due to preserved magnetization symmetry
in detection direction, only odd harmonics occur. From a theoretical
point of view, this should not restrict imaging capabilities in comparison
with the parallel case.

A disadvantage of the perpendicular case is that the decay of the
PSF to high offset field strengths is weaker than in the parallel case, so
that the PSF as a whole is wider (considering the same excitation field
strength).

The core components of the MATLAB code creating the data shown
here can be found in Appendix B.2 (page 109). The code is optimized
for high performance vector calculations; it processes arbitrarily aligned
vectors ~Hoff and ~Hexc.

4.3.2 Linear reconstruction method vs. non-linear
concentration dependency

In 3.2, the non-linear dependence of the magnetization curve on particle
concentration was predicted qualitatively. MMF2 was introduced as
a theory incorporating this effect very well. As shown in 4.2.2, a
(considerably) high particle concentration has huge impact on the higher
harmonic amplitudes in MPS/MPI. It was shown that a magnetization
model which is linear in ρ (SPM) is not suitable for predicting these.

The intention of this part is to examine the impact of the non-
linear concentration dependency on MPI. Therefore, 1D MPI using
the drive field method (DFM, as described in detail in part 2.6.3) was
implemented. The properties of the simulation are described within the
next paragraphs.

1D phantom

The phantom used within the simulation is the 1D ferrofluid concen-
tration distribution cFe3O4(x) (magnetite, d = 15 nm). It is chosen to
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4.3. Magnetic Particle Imaging

exhibit cFe3O4 = 1 [mol/l] at some points (which is a moderately high
concentration) and cFe3O4 = 0 everywhere else. For simulation, the
phantom is discretized to 200 pixels with the locations xi. x = 0 is
defined to be the center of the phantom; its total length is defined as L .
The phantom is visualized in the top graph of Figure 4.11.

Magnetic field configuration

To gain a signal within the framework of the drive field method, a mag-
netic field gradient has to be “driven over the phantom” (as described
in 2.6.3 and indicated in Figure 2.9). This is realized by the field

H(x, t) = G(x)−Hdrive sin(ωdrivet). (4.12)

The gradient G is chosen to 1 T/L. The drive field amplitude Hdrive

defines the “field of view”. It is as big as needed to move the field
free point xFFP (defined by H(xFFP (t), t) = 0) at least from xmin =
−L/2 to xmax = L/2, to scan the whole phantom. The time interval
considered within the simulation starts at t = 0 and ends at t = Tdrive,
with Tdrive = 1/ωdrive. Time discretization (as described in 4.1.1)
yields the timestamps ti.

With the magnetic field and time definitions above, the FFP trajec-
tory xFFP (t) is a “1D Lissajous trajectory”, crossing each point of the
phantom two times.

Real signal generation

The signal from the phantom is simulated via MMF2, using the proper-
ties of the phantom and H(x, t) as input. Actually, for each pixel i with
location xi the relative magnetization1 for all times Mi(ti) is calculated
separately. Then, all Mi(ti) are summed up (weighted equally) and the
result is normalized, yielding the time-dependent relative magnetization
response M(ti) of the entire phantom.

For image reconstruction in terms of the DFM, the non-linear part
of the detected signal is required, i.e. the inductively detected mag-
netization response without the linear response part. Therefore, the

1 Since all rectangles in the phantom are of same height (concentration), it is sufficient
to consider the relative magnetization.
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4. SIGNAL CHARACTERIZATION BY SIMULATION

fundamental frequency component ωdrive is removed from the FOURIER

spectrum of d
dt
M(ti). The result is transformed back into the time do-

main (via inverse FOURIER transformation), yielding the signal vector
~A as described in Equation 2.46. The course of the signal over the time
is presented in the central graph of Figure 4.11.

During image reconstruction, ~A will be decoded using a reconstruc-
tion kernel S to gain the concentration distribution creco(x).

Reconstruction kernel generation

As explained in part 2.6.3 (“Drive Field Method: DFM reconstruction
scheme”), the reconstruction kernel S (a matrix, cf. Equation 2.46), has
to be obtained by acquisition of the signals ~Ads,i of many single delta
samples with known concentration c0(ρ0).

The signals ~Ads,i are gained via relative magnetization simulations
using the SPM. Since the SPM is concentration-independent, c0 is set
indirectly by using an effective diameter, which is found as described
in 4.2.2 (“Impact of particle concentration: effective particle diame-
ter”). Three reconstruction kernels S were built, using three different
diameters:

• The optimal one:

representing cFe3O4 = 1 mol/l→ deff = 17.3 nm.

• An overestimated one:

representing cFe3O4 = 1.6 mol/l→ do = 21.1 nm.

• An underestimated one:

representing cFe3O4 = 0.3 mol/l→ du = 15.6 nm.

Reconstruction result

The reconstruction was accomplished according to Equation 2.46. The
result is presented in the bottom graph of Figure 4.11.

Since the reconstruction is based on solving a linear system of equa-
tions, it assumes a linear relation between amplitudes and concentration.
As argued in 3.2, reality does not satisfy this. In case of S gained via
SPM using deff , the “calibration point” of the linear reconstruction
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Figure 4.11: 1D MPI simulation using the drive field method (DFM).
Top: 1D concentration distribution (phantom). Center: Nonlinear signal
part due to the excitation given by Equation 4.12; simulated via MMF2.
Bottom: Reconstruction using three different kernels, obtained via SPM
with three different particle sizes. deff corresponds to cFe3O4 = 1 mol/l,
the concentration in a few places of the phantom.
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4. SIGNAL CHARACTERIZATION BY SIMULATION

matches the non-linear reality for cFe3O4 = 1 mol/l. Hence, the recon-
struction kernel created with deff yields the best “image” cFe3O4,reco(x).
The other reconstruction kernels are expected to provide worse results.

This simulation shows that the linear reconstruction method used
is unsuitable for quantitative image reconstructions in MPI. Only the
concentration c0 used for calibration is decoded properly. If the phantom
exhibits other concentration values, their quantitative reconstruction
fails. Furthermore, the spatial resolution decreases, depending on the
difference between concentrations found in the phantom and c0. This
behavior can be observed best by means of the du-reconstruction (red
line).

Due to the non-linear dependence of higher harmonic amplitudes
on particle concentration, linear reconstruction methods should be
inappropriate for quantitative reconstruction in general. Further effort
has to be expended on developing non-linear schemes or at least on
minimizing the errors made due to linear reconstructions.
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Chapter 5

Signal characterization by
experiment

5.1 MPS concentration dependency
As a result of the discussion in 3.2 and the simulations described in 4.2.2,
a non-linear relation between the amplitude An of a single harmonic n
and the ferrofluid concentration c is expected to occur in a real MPS
experiment, too. An experimental MPS setup was used to

• prove the deviation of the SPM from the reality, manifesting itself
in a non-linear relation between the two quantities An and c.

• check the suitability of MMF2 to predict An(c).

5.1.1 Experimental MPS setup
A general scheme of a “magnetic particle spectrometer” is shown in
Figure 5.1. This part describes the actual realization of the apparatus
used in the experiments.

The harmonic drive circuit is based on a signal generator, two
integrated audio-amplifier chips in parallel (LM3886T, National Semi-
conductor) and a solenoid as transmission coil (field homogeneity in
the volume of the ferrofluid sample≥ 99 %; 340 windings; length 7 cm;
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transmit coil

receive coiltube with ferrofluid

signal generator

amplifier

transmit filter

harmonic drive circuit

receive filter

acquisition (ADC)

detection circuit

evaluation (DFT, ...)

Figure 5.1: General experimental scheme of a “magnetic particle spectrom-
eter”. The goal of the harmonic drive circuit is to drive the transmit coil with
a strong and harmonically oscillating current. Coils and ferrofluid sample
are shown as cross-section. In the detection circuit, the receive filter masks
out the fundamental frequency of the excitation to only detect the non-linear
response. Signal acquisition is done with an ADC (analog-digital-converter).

inner diameter 3 cm; central field efficiency 6 mT/A). During all experi-
ments, the current in the transmit coil was held constant (0.95 A RMS
at 15.65 kHz). A transmit filter as indicated in Figure 5.1 was not used.
In a more sophisticated setup, its purpose is to absolutely minimize any
other frequency components than the desired fundamental frequency of
the transmit signal.

During measurement, the ferrofluid sample is centered within the
receive coil, which itself is centered within the transmit coil.

The receive coil is made of litz wire (field homogeneity≥ 96 %; 800
windings; length 4 cm; inner diameter 5.5 mm). In the detection circuit
(cf. Figure 5.1), the receive filter is an 11-pole Type I CHEBYSHEV

high-pass filter [43], effectively damping detected harmonics up to
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5.1. MPS concentration dependency

the cutoff frequency at 99.4 kHz. Filter characteristic and excitation
frequency optimize the setup for detecting the 7th harmonic (n = 7).
Low-noise amplified (AD604, Analog Devices) time signal acquisition
is done with a digital storage oscilloscope (TDS1001, Tektronix). To
obtain a high signal to noise ratio, all recorded time signals are averaged
128 times before evaluation (DFT) in MATLAB. Here, systematic errors
are minimized by evaluating the difference between the signal with and
without a sample within the receive coil.

Series of measurements with different ferrofluid samples

The higher harmonic amplitudes An were analyzed for one ferrofluid
at five different iron concentrations cFe,i. The volume of the ferrofluid
was the same for each sample. Therefore, the difference in total amount
of substance between two samples is proportional to the concentration
difference.

We used a customized ferrofluid (as described in [44]), consisting
of dextran coated magnetite cores with water as solvent. The ferrofluid
can be considered as monodisperse, with d = 8.5 nm. The iron concen-
trations cFe,i [mol/l] are from production and measurement (ultraviolet-
visible spectrophotometry). The values are listed in column 1 of Table
5.1. The error in cFe,i, which is estimated generously to ±0.02 mol/l, is
considered to be the dominating error in the experiments1.

5.1.2 Result
The experimental result for the 7th and 9th harmonic of the MPS signal
is presented in Table 5.1. Further harmonics could not be detected well
for the lowest concentrations cFe,i. A7,exp(cFe,i) is visualized in Figure
5.2. Furthermore, the graph contains the linear relation given by the
first two data points, since the SPM is only correct in the limit cFe → 0.
Systematic deviations of the data points from the linearity imply that
the measured signal amplitudes are non-linear dependent on cFe,i. The
non-linear An(cFe,i) dependency was also verified for A9,exp(cFe,i).

1 While the real error in cF e,i is smaller, this generous estimation outweighs the small
error in A and the error in the volume of the ferrofluids. A more detailed error
discussion is omitted, since it is used only during graphical interpretation.
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5. SIGNAL CHARACTERIZATION BY EXPERIMENT

cFe,i [mol
l ] A7,exp [a.u.] A9,exp [a.u.] A7,exp

A9,exp

0.02± 0.02 0.12086 0.00036 334.1
0.12± 0.02 0.71715 0.00229 313.8
0.20± 0.02 1.25552 0.00403 311.2
0.63± 0.02 4.32175 0.01454 297.2
1.17± 0.02 10.31910 0.03621 285.0

Table 5.1: Experimentally obtained higher harmonic amplitudes A7,exp and
A9,exp in the MPS signal of a ferrofluid at five different iron concentrations
cFe,i. For the experimental setup, confer 5.1.1.

It is important to stress that the ratio of the 7th and 9th harmonic
significantly changes with increasing concentration (cf. column 4 of
Table 5.1). The harmonic with higher n gains weight. This is an
unambiguous and quantitative evidence for increasing interparticle
interactions, as explained in 4.2.2 (“Impact of particle concentration:
Impact of local particle concentration on MPS”).

5.2 Comparison with simulation
To check the suitability of MMF2 for predicting An(c) quantitatively,
an MPS simulation was accomplished, using all parameters as given by
the experiment. Thus, Ms is set to 480000 A/m (magnetite) and d is set
to 8.5 nm. The excitation field amplitude used is 6 mT/A·0.95 A·

√
2 ≈

8 mT. Since the total amount of magnetic substance within the mea-
sured ferrofluid samples changes linearly with increasing cFe,i, the total
MMF2 magnetization was simulated, exhibiting this characteristic, too.
In parallel, the total magnetization as given by the SPM was simulated
with the same parameters. If the MMF2 simulation properly reflects
reality, the measured data points An,exp(cFe,i) must be reproducible
by multiplying the whole simulated curve An,MMF2(cFe) with one
constant factor K1.

1 Many properties of the experiment have linear impact on the measured numbers
An,exp(cF e,i): the volume of the ferrofluid sample, the receive coil sensitivity,
receive filter characteristics, low-noise amplification, etc. These numbers are not
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5.2. Comparison with simulation

Figure 5.2: Measured 7th harmonic amplitude A7 in arbitrary units (a.u.)
of the MPS signal in dependence on iron concentration cFe,i. The straight
line is the linearity given by the first two data points.

By doing so1, the MMF2 curves very well reproduce both am-
plitudes A7,exp(cFe,i) and A9,exp(cFe,i), as can be seen in Figure 5.3.
Hence, MMF2 describes the magnetization response of real ferrofluids
very well and – in particular – allows to predict the generation of higher
harmonics in a real MPI/MPS setup.

The SPM simulation was multiplied with the same factor K and the
resulting curves (straight lines, due to their paramagnetic nature) are
shown in the graphs, too. Thus, the difference between the SPM and
MMF2 curves again visualizes the inadequacy of the SPM in case of

known exactly, but can be unified to one single constant of proportionality. The
factor K exploits this degree of freedom and can be used to adjust the results of the
simulation to the experimental ones.

1 K was found separately for each harmonic. This was done, because the receive
circuit of the experimental setup contains only approximately known frequency
dependencies. With exact quantitative knowledge about of these non-linear impacts,
it is possible to compare experimentally gained amplitude ratios with theoretically
predicted ratios, and therefore to validate MMF2 on a higher level.
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5. SIGNAL CHARACTERIZATION BY EXPERIMENT

Figure 5.3: Experimentally gained amplitudes of the 7th (left) and 9th (right)
harmonic of the MPS signal of five ferrofluid samples, exhibiting different
iron concentration cFe; in comparison with MMF2 and SPM simulations.

dense ferrofluids.
As already mentioned in 4.2.2, local particle densities significantly

exceeding the scope of validity of the SPM will not be uncommon in
real MPI applications. Hence, it is necessary to always bear particle
coupling effects in mind. While there will be many MPI applications
exhibiting very low particle concentrations, there will be specific cases
with drastic impact of concentration effects, considering e.g. the agglom-
eration of magnetic particles in cells (leading to iron concentrations of
0.2− 5 mol/l [42]).
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Chapter 6

Application: molecular
detection of a

substance/process

Working on the theoretical understanding of the generation of the MPS
signal and the experimental verification of the significance of the con-
centration effect, lead to an idea for an application:

“Evidence of a substance or process on the cellular
and molecular level by means of detecting variations
in the non-linear magnetization response of magnetic
markers.”

In the framework of the proposed method, those substances/processes
are confirmable, whose existence/run leads to a biological or chemical
reaction changing the physical properties of specific magnetic markers
in such a way that their non-linear magnetization response varies in a
detectable manner.

6.1 Classification
The purpose of the invention is to prove the existence of a specific
substance or process in a quick, cheap and uncomplicated way, based
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on magnetic particle spectroscopy. Potentially detectable substances are
e.g. cells, viruses, bacteria, proteins or smaller molecules. Examples
for detectable processes are the decomposition of magnetic particles
(e.g. driven by metabolism) or the cell internalization of particles.

The most important effect exploited by the invention is the non-
linear dependency of higher harmonic amplitudes in the MPS signal
on local particle concentration changes (cf. theory: 3.2, simulation:
4.2.2, experiment: 5.1). Another exploitable effect is the signal change
due to magnetic core diameter and total amount of magnetic substance
variations in the investigated volume.

The success of the method and its fields of application entirely
depend on the availability of specifically adjusted magnetic mark-
ers, which have to be used to exploit the effects named above for
evidence of a specific substance/process. Consider e.g. a coating of
magnetic markers, adjusted to connect to the surface of a specific
substance or adjusted to enter specific cells. Contact between the
markers and the substance or cells, then leads to an increased lo-
cal particle concentration.

The invented method is based on measuring changes. Therefore, at
least two measurements are needed to draw conclusions. Furthermore,
it is easily conceivable to accomplish many measurements with high
repetition rate to observe processes in real-time.

6.1.1 The (commercial) relevance of the method
The company T2BIOSYSTEMS [45] already realized a method to verify
the existence of a substance in a commercially available apparatus.
On a molecular level, the idea is identical: they make use of local
concentration changes of magnetic particles, due to the existence of
the target substance. However, the detection of concentration changes
is done via nuclear magnetic resonance (NMR): the T2 relaxation
constant of water, which is surrounding the magnetic particles, depends
on the concentration of the particles. The general method is explained
in e.g. [46]. There, the authors demonstrated that their technique can be
readily applied for detecting tuberculosis, by proving the existence of
the Mycobacterium tuberculosis.

The method proposed here, replaces NMR by MPS to detect chang-
ing magnetic properties of the magnetic particles. As a consequence,
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existing knowledge regarding the “nano-engineering”1 can be adopted
unaltered. The important point is that the MPS-based method promises
to be less expensive and better (faster, more sensitive) than the NMR-
based method, as will be discussed in 6.2.2.

6.2 Details

6.2.1 Local particle agglomeration due to special
particle shells

Consider a ferrofluid, made of magnetic particles with specific shells,
adjusted to a target substance, as shown in Figure 6.1 A. Due to its
chemical properties, the shell should bind to the surface of a single unit
of the target substance (e.g. to a single cell or virus), see Figure 6.1
C. Another possibility is that a single unit of the target substance is
smaller than the magnetic particles (this could be a protein or a smaller
molecule) and provides tight binding between them, as shown in 6.1 B.

If the target substance is mixed with the considered special fer-
rofluid, the magnetic particles tightly bind to surfaces (Figure 6.1 E)
or tightly stick together due to a linking effect (Figure 6.1 D). This
particle agglomeration or particle cluster formation leads to an in-
creased local particle concentration, yielding a significant change of
higher harmonic amplitudes and – in particular – amplitude ratios, in
comparison with a reference measurement (cf. part 4.2.2: “Impact of
local particle concentration on MPS”).

Specific particle shells may also lead to a preferred absorption by
special cells, resulting in very high particle concentrations within the
cells.

6.2.2 Comparison with the NMR method
Hardware

Excitation frequencies in MPS are below 100 kHz. Therefore, audio
components can be used in the excitation circuit. The detection circuit

1 Adjustment of magnetic particles and/or particle shells to specific substances/pro-
cesses.
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Figure 6.1: A: a ferrofluid made of special magnetic markers (magnetic
cores (black) in special shells (dark-gray)). B: a substance to be tested
for; a single element is smaller than one marker particle; one element is
able to connect the particles tightly. C: another substance to be detected;
bigger than the particles; is able to tightly bind many particles tightly on its
surface. D and E: ferrofluids with agglomerated magnetic markers due to
the existence of substances to be tested for.

should be able to detect several higher harmonics. For an excitation
frequency from 10 to 100 kHz, an upper detection limit of 1 MHz
already covers the 9th or even higher harmonics.

For NMR measurements, a strong static magnetic field is required
besides excitation and detection circuits. Depending on its actual field
strength, the nuclear spin resonance frequency is on the order of 10
to 100 MHz. Excitation of the system is done by irradiating this res-
onance frequency as precisely as possible; detection is performed at
the same frequency. These high frequencies, the strong offset field and
the required precision of the excitation renders NMR hardware more
expensive and less robust than MPS hardware.
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Repetition rate of single experiments

The duration of a single MPS experiment is on the order of 10 µs,
considering a reasonable excitation frequency and only a few periods to
analyze spectroscopically. In case of NMR, between two measurements
the magnetic relaxation process (which lasts on the order of 100 ms up
to seconds) has to be waited for.

Hence, MPS allows for a much higher repetition rate of single
experiments. This can be exploited for averaging a lot or for real-time
measurements.

Signal background

The NMR method analyzes signal emitted by water. Even if all mag-
netic particles in the analyzed volume agglomerate, this changes the
signal of a only a part of the emitting system. Unaffected water creates
a disturbing background signal.

The MPS method analyzes the signal emitted by magnetic particles.
If all magnetic particles agglomerate, the whole signal-producing sys-
tem changes. There is no such background as described for the NMR
method.

Sensitivity

The sensitivity of single experiments of either the MPS or NMR method
is difficult to compare. The comparison can be based on the estimation
that a magnetic particle in MPS provides the same magnetization as
1014 protons in NMR1.

In principle, the lack of background signal in case of the MPS
method should be a huge advantage. In combination with the higher
single experiment repetition rate, the MPS method should exhibit a
higher sensitivity per time than the NMR method.

1 Considering the magnetic moment of a proton being 10−26 Am2, the magnetic
moment of a magnetic particle being 10−18 Am2 and 1 contributing spin of 1000000
in NMR.
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6.2.3 Extensions
Optimization via offset field

As described in part 2.5.2, the generation of higher harmonics can be
optimized by application of a magnetic offset field Hoff . The spectro-
scopical investigation of a ferrofluid sample is then done by applying
the field

H(t) = Hoff +Hexc sin(ω0t) (6.1)

to the total volume of the sample. For substance verification based on
concentration changes,Hoff can be chosen in a way that a concentration
change leads to a maximum change of higher harmonic amplitudes.

Spatially resolved evidence: combination with MPI

In principle, the proposed method for evidence of a substance or process
can be combined with the MPI approach, using the same specifically
developed magnetic markers as described before. Comparison of two
MPI measurements should spatially resolved reveal the changes of
amplitudes of higher harmonics exhibiting the fingerprint of strong
concentration changes. It is – at least theoretically – possible to find
these fingerprints; the capability has to be created by developing special
reconstruction schemes.
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Chapter 7

Conclusion

In previous works in the field of Magnetic Particle Imaging (MPI), mag-
netic particle interaction was disregarded by only considering LANGE-
VIN’s single particle model (SPM). Within this thesis, the impact of
interacting particles on the MPI signal was treated theoretically, by
simulation, and by experiment.

The most important result of this work is that magnetic particle
interaction leads to a non-linear relation between higher harmonic am-
plitudes An and particle concentration c. Therefore, current linear
image reconstruction schemes are not qualified for quantitative recon-
struction of the spatial particle concentration distribution: only the
reference particle concentration used for detecting the system function
is reconstructed properly; other concentrations found in a phantom are
decoded wrongly. Furthermore, the spatial resolution suffers.

It was shown that the impact of increasing local particle concentra-
tion qualitatively is the same as the impact of a magnetic core diameter
enhancement. Hence, ferrofluids based on cluster particles (several
magnetic cores per particle) can be described by an effective magnetic
core diameter per particle. Comparison of simulation and experiment
revealed that the second-order modified mean-field theory (MMF2) by
IVANOV is suitable for predicting the magnetization response of a dense
ferrofluid. Therefore, MMF2 is the preferable theory in MPI, predicting
the non-linear An(c) relation correctly.

The main conclusion of this thesis is that magnetic particle in-
teraction is an important part in the theory of MPI. In the future, it
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has to be accounted for in image reconstruction schemes, to main-
tain the capability of quantitative analysis even in cases of strong
local concentration fluctuations, e.g. when particles agglomerate in
cells.

Moreover, the effect of magnetic particle interaction on the MPI
signal opens up a new field of application, by observing the charac-
teristic fingerprint of local particle concentration changes: the change
of the ratio of two higher harmonic amplitudes. This can be used to
follow the process of particle agglomeration in cells or to prove the
existence of a specific substance on the cellular and molecular level,
like bacteria, viruses, cells, proteins or smaller molecules.
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Appendix A: Mathematica
source codes
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A.1) Magnetic Particle Spectroscopy:

schematical simulation 

Excitation: harmonical & symmetrical with respect to the origin
Transfer function: Langevin function �(a) as a representation for

any specific magnetization theory M(H)
Response: inductive detection (time derivative)

© Copyright 2010 Jan-Philip Gehrcke, Universität Würzburg, Experimentelle Physik 5
        jgehrcke@googlemail.com -- http://gehrcke.de

Signal generation: M(t) and d
dt

M(t)

In[1]:= Langevin@α_D = Coth@αD − 1 ê α;

MagnField@t_D = 6 ∗ Sin@tD;

MagnResponse@t_D = Langevin@MagnField@tDD;

DdtMagnResponse@t_D = D@MagnResponse@tD, 8t, 1<D

Out[4]=
1

6
Cot@tD Csc@tD − 6 Cos@tD Csch@6 Sin@tDD2

Careful setup of sampling parameters for DFT

fdrive = 1 ê H2 ∗ PiL;

fsample = 50 ∗ fdrive;

periods = 1;

length = periods ê fdrive;

deltat = 1 ê fsample; H∗ distance of sampling points ∗L

H∗ crucial: @sampled datasetD+@sampled datasetD+... MUST BE the periodic signal

−−> first and last sampled point MUST NOT be the same.

−−> Therefore, sample points in time from zero in distances deltat

up to length−deltat ∗L

tvec = Table@time, 8time, 0, length − deltat, deltat<D;

samplepoints = Length@tvecD;

deltaf = fsample ê samplepoints;

Build frequency vectors: absolute and normalized

In[13]:= freqvec = Table@freq, 8freq, 0, fsample − deltaf, deltaf<D;

freqvecnorm = freqvec ê fdrive;
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Sample signals and correct �(0)=0

In[21]:= MagnResponseSamples = Map@MagnResponse, tvecD;

MagnResponseSamples@@1DD = 0;

MagnResponseSamples@@26DD = 0;

DdtMagnResponseSamples = Map@DdtMagnResponse, tvecD;

DdtMagnResponseSamples@@1DD = 2;

DdtMagnResponseSamples@@26DD = −2;

Build correctly normalized DFTs with 200 digit precision

ü Frequency spectrum of magnetization response M(t)

In[27]:= RespSpectrum = 2 ∗ Abs@Fourier@

N@MagnResponseSamples, 200D, FourierParameters → 81, −1<

DD ê samplepoints;

RespSpectrum@@1DD = RespSpectrum@@1DD ê 2;

ü Frequency spectrum of d

dt
M(t)

In[29]:= DdtRespSpectrum = 2 ∗ Abs@Fourier@

N@DdtMagnResponseSamples, 200D, FourierParameters → 81, −1<

DD ê samplepoints;

DdtRespSpectrum@@1DD = DdtRespSpectrum@@1DD ê 2;

ü Frequency spectrum of d

dt
M(t) via ‰w multiplication

In[31]:= DdtFreqMultiRespSpectrum = 2 ∗ Abs@� ∗ 2 ∗ π ∗ freqvec ∗ Fourier@

N@MagnResponseSamples, 200D, FourierParameters → 81, −1<

DD ê samplepoints;

DdtFreqMultiRespSpectrum@@1DD = DdtFreqMultiRespSpectrum@@1DD ê 2;
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Build Amplitude-Frequency-Pair lists for plotting, cut out numerical zeros

In[33]:= ZeroPositions = Position@Chop@RespSpectrumD, 0D;

RespSpectrumZeroClean = Delete@RespSpectrum, ZeroPositionsD;

freqvecnormZeroClean = Delete@freqvecnorm, ZeroPositionsD;

DdtZeroPositions = Position@Chop@DdtRespSpectrumD, 0D;

DdtRespSpectrumZeroClean = Delete@DdtRespSpectrum, DdtZeroPositionsD;

DdtFreqMultiZeroPositions = Position@Chop@DdtFreqMultiRespSpectrumD, 0D;

DdtFreqMultiRespSpectrumZeroClean = Delete@

DdtFreqMultiRespSpectrum,

DdtFreqMultiZeroPositionsD;

maxpoints = Round@Length@DdtRespSpectrumZeroClean D ê 3D;

DdtplotdataLog = Table@

8freqvecnormZeroClean@@iDD, DdtRespSpectrumZeroClean@@iDD<,

8i, 1, maxpoints<D;

DdtFreqMultiplotdataLog = Table@

8freqvecnormZeroClean@@iDD, DdtFreqMultiRespSpectrumZeroClean@@iDD<,

8i, 1, maxpoints<D;

plotdata = Table@

8freqvecnormZeroClean@@iDD, RespSpectrumZeroClean@@iDD<,

8i, 1, maxpoints<D;

ü Plotting example: Frequency spectrum of d

dt
M(t) via both methods

In[44]:= ListPlot@8DdtplotdataLog, DdtFreqMultiplotdataLog<,

Axes → False, Filling → Bottom, Frame → True,

FrameLabel → 88Style@"∝ �HUHtLL", 21D, None<, 8Style@"ωêω0", 21D, None<< ,

LabelStyle → Directive@Bold, 12, FontFamily → "Times"D,

PlotStyle → 8Directive@PointSize@0.025D, GrayD, Directive@PointSize@0.009D, BlackD<,

FillingStyle → 8Directive@Thickness@0.005D, BlackD<,

ImageSize → 400

D

Out[44]=
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A.2) Magnetic Particle Spectroscopy:

Harmonic's exponential decay in

dependence of magnetic core diameter

Excitation: harmonical & symmetrical with respect to the origin
Transfer function: relative magnetization as given by SPM, 

for different diameters
Response: inductive detection (time derivative)
Evaluation: exponential fit of odd harmonics' amplitudes

© Copyright 2010 Jan-Philip Gehrcke, Universität Würzburg, Experimentelle Physik 5
        jgehrcke@googlemail.com -- http://gehrcke.de

Physical parameters and magnetization theory

In[410]:= Μ0 = 4 * Pi * 10^H-7L;
kB = 1.3806504`500 * 10^H-23L;
T = 300;

ampdrive = 5 � 1000;

M0 = 480 000;

Bdrive@time_D = ampdrive * N@Sin@omegadrive * timeD, 500D;

magnSPM@H_, m_D = CothB
1

kB T
m Μ0 * HF - HkB TL � Hm Μ0 * HL;

magnmoment@saturationmagnetization_ , diameter_D =

saturationmagnetization * HHdiameter * 10^H-9LL � 2L^3 * Pi * 4 � 3;

Careful setup of sampling parameters for DFT

In[418]:= fdrive = 25 000;

omegadrive = 2 * Π * fdrive;

fsample = fdrive * 100;

periods = 1;

length = periods � fdrive;

deltat = 1 � fsample;

deltaf = fsample � samplepoints;

tvec = Table@time, 8time, 0, length - deltat, deltat<D;
samplepoints = Length@tvecD;
Bdrivesamples = Map@Bdrive, tvecD;

Build frequency vectors: absolute and normalized
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Build frequency vectors: absolute and normalized

In[428]:= freqvec = Table@freq, 8freq, 0, fsample - deltaf, deltaf<D;
freqvecnorm = freqvec � fdrive;

Build diameter list

In[430]:= mindiameter = 5 � 2; H* @nmD *L
maxdiameter = 50;

diametersteps = 95;

diameters = Table@dia,
8dia, mindiameter, maxdiameter, Hmaxdiameter - mindiameterL � Hdiametersteps - 1L<D;

For each diameter:
- sample signal
- build correctly normalized DFT with 200 digit precision
- extract odd harmonic's amplitudes

In[434]:= normFFTtimeDerivative@samples_, freqvec_D :=

Module@8data = samples, freqs = freqvec, fft<,
fft = Chop@2 * Abs@ä * 2 * Π * freqs * Fourier@

N@data, 200D, FourierParameters ® 81, -1<
DD � samplepoints, 10^-190D;

fft@@1DD = fft@@1DD � 2;

fft

D
magnSamples@BdriveSamples_, diameter_, M0_D :=

Module@8Bsamples = BdriveSamples, d = diameter, satmag = M0, samples<,
samples = Table@
Quiet@magnSPM@Bsamplepoint � Μ0, magnmoment@satmag, dDDD,
8Bsamplepoint, Bsamples<

D;
samples@@

Flatten@Position@samples, IndeterminateDD
DD = 0; H* this corrects LH0L=0 *L

samples

D
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In[436]:= maxharmonic = 13; H* extract harmonic's amplitudes An for n = 3,5,..,13 *L
harmonics = Table@n, 8n, 3, maxharmonic, 2<D;
harmFreqs = Table@fdrive * h, 8h, harmonics<D;
harmonicAmplitudesAllDiameters = 8<; H* a matrix;

each row gets the amplitudes for one diameter *L
indexOfHarmonic@n_D = fdrive * n * samplepoints � fsample + 1;

Do@
magnetizationSamples = magnSamples@Bdrivesamples, d, M0D;
spectrumDdtMagnResp = normFFTtimeDerivative@magnetizationSamples, freqvecD;
harmonicAmplitudes = 8<; H* gets amplitudes for current diameter *L
Do@AppendTo@harmonicAmplitudes,

spectrumDdtMagnResp@@indexOfHarmonic@hDDDD, 8h, harmonics<D;
AppendTo@harmonicAmplitudesAllDiameters , harmonicAmplitudesD;
, 8d, diameters<

D

For each diameter:
- fit amplitude over n=f/fdrive exponentially: A × ãB-k×n 
- store fit parameters for k-over-diameter-plot

In[442]:= fitPlots = 8<;H* List for Plots *L
expFitks = 8<;H* List for exp fit decay parameter k *L
expFitAs = 8<;H* List for exp fit parameter A *L
expFitBs = 8<;H* List for exp fit parameter B *L
expFitRs = 8<;H* List for exp fit residual R^2 *L
Do@
data = Transpose@8harmonics, harmonicAmplitudes<D;
H*Print@dataD;*L
fit = NonlinearModelFit@data, A * Exp@B - k * nD, 8A, B, k<, nD;
H*fit=NonlinearModelFit@data,

A* Exp@B-k*nD+A2*Exp@B2-k2*Hn-n0LD,8A,A2,B,B2,k,k2,n0<,nD;*L
H*fit=NonlinearModelFit@data,A* Exp@B1-Hk1*n+k2*n^pLD,8A,B1,B2,k1,k2,p<,nD;*L
H*Print@fit@"BestFitParameters"DD;*L
H*Print@N@fit@"RSquared"D,35DD;*L
AppendTo@expFitks, k �. N@fit@"BestFitParameters"D, 5DD;
AppendTo@expFitAs, A �. N@fit@"BestFitParameters"D, 5DD;
AppendTo@expFitBs, B �. N@fit@"BestFitParameters"D, 5DD;
AppendTo@expFitRs, N@fit@"RSquared"D, 25DD;
AppendTo@fitPlots, Show@ListLogPlot@dataD, LogPlot@fit@fD, 8f, 0, 25<D, Frame ® TrueDD
, 8harmonicAmplitudes, harmonicAmplitudesAllDiameters <

D
H* display fitPlots and result: plotdataExpDecay=Transpose@8diameters,expFitks<D;
ListPlot@plotdataExpDecayD *L
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A.3) Fit SPM to MMF2:

Find effective magnetic core diameter

corresponding to high local concentration

© Copyright 2010 Jan-Philip Gehrcke, Universität Würzburg, Experimentelle Physik 5
        jgehrcke@googlemail.com -- http://gehrcke.de

Define constants and magnetization functions

In[13]:= Clear@Evaluate@Context@D <> "∗"DD
µ0 = 4 ∗ Pi ∗ 10^H−7L;
kB = 1.3806504 ∗ 10^H−23L;
T = 300;

magnmoment@saturationmagn_, diameter_D =

saturationmagn ∗ HHdiameter ∗ 10^H−9LL ê 2L^3 ∗ Pi ∗ 4 ê 3;
magnetitemolvolm3 = 0.0000445254999688228;

cliter@ρnorm_D = 1 ê 1000 ∗ ρnorm ê magnetitemolvolm3;
ρnorm@cliter_D = 1000 ∗ cliter ∗ magnetitemolvolm3;

relmagnMMF2@H_, ρnormiert_, m_, M0_D =

CothB 1

kB T
m µ0 H +

1

3
M0 ρnormiert −

kB T

H m µ0
+ CothB H m µ0

kB T
F

1 +

1

48
M0 ρnormiert

kB T

H2 m µ0
−

m µ0 CschB H m µ0

kB T
F2

kB T
F −

HkB TL ì m µ0 H +

1

3
M0 ρnormiert −

kB T

H m µ0
+ CothB H m µ0

kB T
F

1 +

1

48
M0 ρnormiert

kB T

H2 m µ0
−

m µ0 CschB H m µ0

kB T
F2

kB T
;

relmagnSPM@H_, m_, M0_D = CothB H m µ0

kB T
F −

kB T

H m µ0
;

relmagnMMF2d@H_, ρnormiert_, d_, M0_D =

relmagnMMF2@H, ρnormiert, magnmoment@M0, dD, M0D;
relmagnSPMd@H_, d_, M0_D = relmagnSPM@H, magnmoment@M0, dD, M0D;
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Prescribe real particle properties and magnetic field cut-out

In[25]:= Bmin = 0; H∗ define cut−out for fitting functions ∗L
Bmax = 0.02;

Hmin = Bmin ê µ0;

Hmax = Bmax ê µ0;

satmag = 480000; H∗ Magnetite ∗L
FeConc = 12;H∗ real local particle density in molêl Fe ∗L
dens = ρnorm@FeConc ê 3D; H∗ iron concentration → normed density ∗L
realdiameter = 15; H∗ real particle diameter ∗L

Investigate difference between SPM and MMF2: integrate over squared difference

In[33]:= H∗ Sum up quadratic difference between functions within magnetic field cut−out ∗L
quaddiff@effectivediameter_D := NIntegrate@

HrelmagnMMF2d@H, dens, realdiameter, satmagD −

relmagnSPMd@H, effectivediameter, satmagDL^2,
8H, Hmin, Hmax<D

quaddiff@realdiameterD
Out[34]= 1291.28

Fit SPM to MMF2 curve with an effective diameter

In[35]:= minimization = Quiet@NMinimize@8quaddiff@deffD, realdiameter < deff < 50<, 8deff<DD
effectivediameter = deff ê. minimization@@2DD;

Out[35]= 87.5991, 8deff → 22.7003<<

In[38]:= Plot@8relmagnMMF2d@H, dens, realdiameter, satmagD,
relmagnSPMd@H, realdiameter, satmagD, relmagnSPMd@H, effectivediameter, satmagD<,

8H, Hmin, Hmax<, PlotRange → 80, 1<,
LabelStyle → Directive@Bold, 14D, Frame → True, Ticks → False,

PlotStyle → 8Directive@Thick, BlackD,
Directive@Black, DashedD, Directive@Black, Thick, DotDashedD<,

FrameLabel → 8Style@"H @AêmD", 19D, Style@Mrel, 19D< , RotateLabel → False,

ImageSize → 8500<D;
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Appendix B: Matlab source
codes
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% Appendix B.1
function  mmf2_magn_norm = mmf2_magn_norm(H_norm, m, normed_ density, satmagn, T)
    % Relative magnetization of a ferrofluid:
    % Implementation of second order modified mean-fiel d theory (MMF2) [1]
    % by Jan-Philip Gehrcke (jgehrcke@gmail.com) -- Uni versität Würzburg
    %
    % MMF2 is based on Langevin's single particle model ,
    % but uses an effective field H_eff:
    % RelMagnMMF2(H,normed_density) = L(a)
    % with L(a) = coth(a) - 1/(a) and a = (mu0 m H_eff) /(kB T)
    % H_eff is a big term. It depends on H and the norm ed_density.
    %
    % params:
    %       m:              magnetic moment of a single  particle [Am^2]
    %       T:              temperature [K]
    %       H_norm:         a vector/list of magnetic f ield values [A/m]
    %       normed_density: normed density of particles  [0,1]
    %       satmagn:        particle's bulk material's saturation
    %                       magnetization [A/m]
    %
    % [1] AO. Ivanov and OB. Kuznetsova. "Magnetic prop erties of dense
    %     ferrofluids: An influence of interparticle co rrelations".
    %     In: Phys.Rev. E 64 (2001), p. 041405.
 
    % Define constants:
    mu_0 = 4 * pi * 10^(-7);   % magnetic field constant [Vs/(Am)]
    kB = 1.3806504 * 10^(-23); % boltzmann constant [J/K]
    
    % Now calc MMF2 response for each H value given.
    % These terms are needed multiple times:
    m_mu_0 = m * mu_0;
    kB_T = kB * T;
    satmagn_dens = satmagn * normed_density;
    H_norm_m_mu_0 = H_norm .* m_mu_0;
    H_norm_m_mu_0_kB_T = H_norm_m_mu_0 ./ kB_T;
    
    % This big term is needed two times:
    blubb0r = m_mu_0 .* ...
    (H_norm + ...
        (satmagn_dens .* ...
            (-(kB_T ./ H_norm_m_mu_0) + coth(H_norm _m_mu_0_kB_T)) .* ...
            (1 + (satmagn_dens .* (kB_T ./ (H_norm .^ 2 .* m_mu_0) - ...
                (m_mu_0 .* csch(H_norm_m_mu_0_kB_T)  .^ 2) ./ kB_T)) ./ 48 ...
            ) ...
        ) ./ 3 ...
    );
    
    % Langevin function
    mmf2_magn_norm = coth(blubb0r ./ kB_T) - kB_T . / blubb0r;
    
    % A zero in the input leads to "not a number" (NaN)  in the output,
    % due to coth(0)-1/0. Analytically, this term is kn own to be zero.
    % So, find the NaNs and replace them with zeros:
    mmf2_magn_norm(isnan(mmf2_magn_norm)) = 0;
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% Appendix B.2
 
% This is an optimized implementation of vector fie ld calculations
% for MPS/MPI. The nth higher harmonic's amplitude is calculated for many
% different excitation field / offset field combina tions. Both are
% considered and treated as vectors. The (relative)  magnetization response
% is calculated in terms of the SPM. The code prese nted is only the core of
% data _creation_, data usage and evaluation is not  shown, as well as a
% huge header of variable definitions.
 
% by Jan-Philip Gehrcke (jgehrcke@gmail.com) -- Uni versität Würzburg
 
% at this point, many variables already have to be initialized:
%    - physical constants, ..., particle material&d iameter
%    - the sampling constants for DFT and its inter pretation
%    - the magnetic field parameters, as e.g. `B_ex c_abs_start`
 
% *** loop over B_exc 
for  B_exc_abs = linspace(B_exc_abs_start,B_exc_abs_end ,B_exc_abs_steps)
    B_exc = [0;0;1] * B_exc_abs; % excitation field amplitude in z-direction
    H_exc = B_exc / mu_0;
    % *** loop over B_off
    for  B_off_abs = linspace(B_off_abs_start,B_off_abs_end ,B_off_abs_steps)
        B_off = [0;1;0] * B_off_abs; % offset field in y-direction
        H_off = B_off / mu_0;
        % *** build total field over time (via vector addit ion) 
        % ************************************************* ************************
        H_in = bsxfun(@plus,H_off,H_exc*sin(omega_i n * t_vec));
        % build norms of field: [norm(H(t)), norm(H(t+dt))]
        H_in_norms = sqrt(sum(H_in.*H_in));
        % *** build relative magnetization response as give n by SPM
        % ************************************************* ************************
        mu0mH = mu_0 * m *H_in_norms;
        spm_rel_mag = coth(mu0mH/kBT) - kBT./mu0mH;
        % A zero in the input leads to "not a number" (NaN)  in the output,
        % due to coth(0)-1/0. Analytically, this term is kn own to be zero.
        spm_rel_mag(isnan(spm_rel_mag)) = 0;            
        % build M_rel_vec = L(|H|) * unitiyvec(H)
        % build the unityvectors of H(t)
        H_in_vec_unity = bsxfun(@rdivide,H_in,H_in_ norms);
        H_in_vec_unity(isnan(H_in_vec_unity)) = 0;
        % build M_rel_vec by multiplying absolute value wit h direction
        M_rel_vec = bsxfun(@times,spm_rel_mag,H_in_ vec_unity);
        % *** acquisition by inductivity and Fourier analys is of M's time
        % *** derivative: DFT of M and multiplication with i omega
        % ************************************************* ************************
        fft_M = fft(M_rel_vec(3,:)); % acquire and evaluate 3rd z component
        spectrum_dt_M  = 2 * abs(1i*2*pi*realfreqs. *fft_M) / samplepoints;
        % *** extract A_n information for current B_exc / B _off combination
        % ************************************************* ************************
        harmonic = 3;
        indexofharmonic = f_in*harmonic*samplepoint s/f_sample + 1;
        ampl = spectrum_dt_M(indexofharmonic);
    end
end
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