Realisierung eines Quantencomputers mit Ionen

Fabian Bach, Jan-Philip Gehrcke, Malte Lichtner

Julius-Maximilians-Universität Würzburg

8. Mai 2008

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- 2 Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- 3 Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- 🕕 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- 3 Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

Warum Quantencomputer?

Durch Superposition und Verschränkung von quantenmechanischen Zuständen können einige Probleme in der Informatik wesentlich effizienter gelöst werden, als mit klassischen Computern.

Warum ist das so?

Warum Quantencomputer?

Durch Superposition und Verschränkung von quantenmechanischen Zuständen können einige Probleme in der Informatik wesentlich effizienter gelöst werden, als mit klassischen Computern.

Warum ist das so?

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- Dirac-Notation $|0\rangle$ und $|1\rangle$

Zustand Ψ_{QB} des Qubits ist normierte Superposition mit komplexer Koeffizienten:

$$\Psi_{QB}=c_0\ket{0}+c_1\ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- Dirac-Notation $|0\rangle$ und $|1\rangle$

Zustand Ψ_{QB} des Qubits ist normierte Superposition mit komplexer Koeffizienten:

$$\Psi_{QB}=c_0\ket{0}+c_1\ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- Dirac-Notation $|0\rangle$ und $|1\rangle$

Zustand Ψ_{QB} des Qubits ist normierte Superposition mit komplexer Koeffizienten:

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- Dirac-Notation $|0\rangle$ und $|1\rangle$

Zustand Ψ_{QB} des Qubits ist normierte Superposition mit komplexen Koeffizienten:

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- Dirac-Notation $|0\rangle$ und $|1\rangle$

Zustand Ψ_{QB} des Qubits ist normierte Superposition mit komplexen Koeffizienten:

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden:
 - $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden:
 - $|0\rangle\otimes|0\rangle=|00\rangle\,,\ldots,|1\rangle\otimes|1\rangle=|11\rangle$
- Es ergibt sich also als Zustandsraumbasis $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle\otimes|0\rangle=|00\rangle,\ldots,|1\rangle\otimes|1\rangle=|11\rangle$
- Es ergibt sich also als Zustandsraumbasis $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden:
 - $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden:
 - $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

$Quanten register \Leftrightarrow klassisches \ Register$

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \left| b \right\rangle$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

$Quanten register \Leftrightarrow klassisches \ Register$

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \ket{b}$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

Quantenregister ⇔ klassisches Register

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \ket{b}$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel

$$\Psi_{QR} = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel:

$$\Psi_{QR} = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel:

$$\Psi_{QR} = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) ⇒ cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) ⇒ Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Mit experimentellen Realisierungen von "Qubit-Rotation" und "cNOT-Gate zwischen zwei Qubits" kann man prinzipiell einen Quantenrechner konstruieren.

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) ⇒ cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) ⇒ Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt

Mit experimentellen Realisierungen von "Qubit-Rotation" und "cNOT-Gate zwischen zwei Qubits" kann man prinzipiell einer Quantenrechner konstruieren.

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) ⇒ cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) ⇒ Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt

Mit experimentellen Realisierungen von "Qubit-Rotation" und "cNOT-Gate zwischen zwei Qubits" kann man prinzipiell einen Quantenrechner konstruieren.

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) ⇒ cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) ⇒ Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Mit experimentellen Realisierungen von "Qubit-Rotation" und "cNOT-Gate zwischen zwei Qubits" kann man prinzipiell einen Quantenrechner konstruieren.

Die controlled-NOT Verknüpfung

formale Definition:

$$\hat{C}_{12}: |\epsilon_1\rangle |\epsilon_2\rangle \rightarrow |\epsilon_1\rangle |\epsilon_1 \oplus \epsilon_2\rangle$$
 mit \oplus : Addition modulo 2

Die controlled-NOT Verknüpfung

formale Definition:

$$\hat{C}_{12}:\ket{\epsilon_1}\ket{\epsilon_2} o\ket{\epsilon_1}\ket{\epsilon_1\oplus\epsilon_2}$$
 mit \oplus : Addition modulo 2

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Die controlled-NOT Verknüpfung

formale Definition:

$$\hat{C}_{12}: \ket{\epsilon_1}\ket{\epsilon_2} o \ket{\epsilon_1}\ket{\epsilon_1 \oplus \epsilon_2}$$
 mit \oplus : Addition modulo 2

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Die controlled-NOT Verknüpfung

formale Definition:

$$\hat{C}_{12}:\ket{\epsilon_1}\ket{\epsilon_2} o\ket{\epsilon_1}\ket{\epsilon_1\oplus\epsilon_2}$$
 mit \oplus : Addition modulo 2

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

Es gibt verschiedene Ansätze

überwiegend theor. Konzept; Realisierungen auf kleinem Maßstab erfolgt:

... zum Beispiel mit Kernspinresonanz (2001: Shors Algorithmus auf 7-Qubit-Quantencomputer \Rightarrow 15 = 3 · 5) - aber: **nicht skalierbar**

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion ê ein Qubit (metastab. elektr. Übergang)
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werder
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werder
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle

- ursprüngliche Version (Nobelpreis 1989 an Wolfgang Paul)
- Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle:

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle:

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle:

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

Für die lineare PAUL-Falle gilt

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- ullet radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

Für die lineare PAUL-Falle gilt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

Für die lineare PAUL-Falle gilt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

Für die lineare PAUL-Falle gilt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mitteligenfrequenzen ω_z).

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mit Eigenfrequenzen ω_z).

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mit Eigenfrequenzen ω_z).

Ausgewählte axiale Schwingungsmoden

Idee: einzelnes COM-Phonon soll als "Bus" dienen mit $n \in \{0,1\}$

Ausgewählte axiale Schwingungsmoden

Idee: einzelnes COM-Phonon soll als "Bus" dienen mit $n \in \{0,1\}$

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ightharpoonup ightharpoonup Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- ullet die "Busmode" soll nur im Grundzustand n=0 oder n=1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ightharpoonup ightharpoonup Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- ullet die "Busmode" soll nur im Grundzustand n=0 oder n=1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ullet \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n=0 oder n=1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ullet \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ullet \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ullet \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- ullet die "Busmode" soll nur im Grundzustand n=0 oder n=1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ullet \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- ullet die "Busmode" soll nur im Grundzustand n=0 oder n=1 vorliegen
- das System muss also durch maximale Kühlung auf n=0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Ein Laserstrahl wird leicht rotverschoben bezüglich eines ausgewählten Übergangs auf ein Atom eingestrahlt:

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

Durch zwei gegeneinanderlaufende Strahlen...

...ergibt sich die Fixierung eines Atoms in einer Dimension:

Durch zwei gegeneinanderlaufende Strahlen...

...ergibt sich die Fixierung eines Atoms in einer Dimension:

Doppler-Limit:

- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) dessire Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

O(100µK)

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

O(100µK)

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

O(100µK)

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar \gamma}{2k_B}$$

O(100µK)

schwingendes Ion:

gleichzeitige Anregung von elektr. und Schwingungsübergang

Optisches Pumpen in den Schwingungsgrundzustand n = 0:

Nomenklatur:

Phonon: $|0\rangle$, $|1\rangle = |n = 0\rangle$, $|n = 1\rangle$ lektr. Zustand: $|g\rangle$, $|e\rangle = \mathbf{g}$ roundstate, **e**xcited

Optisches Pumpen in den Schwingungsgrundzustand n = 0:

Nomenklatur:

Phonon:
$$\ket{0},\ket{1} = \ket{n=0},\ket{n=1}$$

elektr. Zustand: $|g\rangle$, $|e\rangle = \mathbf{g}$ roundstate, **e**xcited

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

 ω_L : Laser-Frequenz $(E = E_0 \cos \omega t)$

 ω : elektronischer Übergang $\omega = \omega_a - \omega_\sigma$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$

 Ω : Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

$$= \frac{\chi}{2} \sin \frac{\eta}{2} t$$

$$ω_L$$
: Laser-Frequenz $(E = E_0 \cos ωt)$

$$\omega$$
: elektronischer
Übergang $\omega = \omega_e - \omega_t$

$$\chi$$
: resonante
Rabi-Frequenz
 $\chi = \mu E_0/\hbar$

$$\Delta$$
: Verstimmung des Lasers $\Delta = \omega_L - \omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

$$c_e = rac{\chi}{\Omega} \sin rac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz $(E = E_0 \cos \omega t)$

$$\omega$$
: elektronischer
Übergang $\omega = \omega_e - \omega_e$

$$\Delta$$
: Verstimmung des Lasers $\Delta = \omega_L - \omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\chi^2 + Δ}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

$$c_e = rac{\chi}{\Omega} \sin rac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz $(E = E_0 \cos \omega t)$

$$\omega$$
: elektronischer
Übergang $\omega = \omega_e - \omega_e$

$$\Delta$$
: Verstimmung des Lasers $\Delta = \omega_L - \omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\chi^2 + Δ}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz

$$(E = E_0 \cos \omega t)$$

Übergang
$$\omega = \omega_e - \omega_g$$

$$\chi$$
: resonante

$$\chi = \mu E_0/n$$

$$\Delta$$
: Verstimmung des

Lasers
$$\Delta = \omega_L - \omega$$

$$\Omega = \sqrt{\chi^2 + \Delta^2}$$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

$$c_e = rac{\chi}{\Omega} \sin rac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz

$$\omega$$
: elektronischer
Übergang $\omega = \omega_2 -$

$$\chi = \mu E_0/\hbar$$

$$\Delta$$
: Verstimmung des Lasers $\Delta=\omega_L-\omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\sqrt{2} + Δ}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

$$c_e = rac{\chi}{\Omega} \sin rac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz

$$\omega$$
: elektronischer
Übergang $\omega = \omega_2 -$

$$\chi = \mu E_0/\hbar$$

$$\Delta$$
: Verstimmung des Lasers $\Delta=\omega_L-\omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\sqrt{2} + Δ}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

$$\omega_L$$
: Laser-Frequenz $(E = E_0 \cos \omega t)$

$$\omega$$
: elektronischer Übergang $\omega = \omega_e - \omega_e$

χ: resonante

 $\chi = \mu E_0/\hbar$

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$

 Ω : Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

 ω_L : Laser-Frequenz

$$(E = E_0 \cos \omega t)$$

 ω : elektronischer

Übergang
$$\omega = \omega_e - \omega_g$$

χ: resonante

Rabi-Frequenz

 $\chi = \mu E_0/n$

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega_L$

Ω: Rabi-Frequenz $Ω = \sqrt{\sqrt{2} + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

 ω_L : Laser-Frequenz

$$(E = E_0 \cos \omega t)$$

 ω : elektronischer

Übergang
$$\omega = \omega_e - \omega_g$$

χ: resonante Rabi-Frequenz

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$

Ω: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_g |g\rangle + c_e |e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

 ω_L : Laser-Frequenz

$$(E = E_0 \cos \omega t)$$

 ω : elektronischer

Übergang
$$\omega = \omega_e - \omega_g$$

 χ : resonante Rabi-Frequenz

$$\chi = \mu E_0/\hbar$$

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_{\sigma}|g\rangle + c_{e}|e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

 ω_L : Laser-Frequenz

 $(E=E_0\cos\omega t)$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$

 Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$

Ω: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems

$$\Psi = c_{\sigma}|g\rangle + c_{e}|e\rangle$$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation

$$c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$$

 ω_L : Laser-Frequenz

$$(E = E_0 \cos \omega t)$$

w: elektronischer

Übergang
$$\omega = \omega_e - \omega_g$$

χ: resonante Rabi-Frequenz

$$\chi = \mu E_0/\hbar$$

 Δ : Verstimmung des Lasers $\Delta = \omega_I - \omega$

$$Ω$$
: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

$$p_2(t) = c_{
m e}^2(t) = rac{\chi^2}{\chi^2 + \Delta^2} \sin^2\left(rac{\sqrt{\chi^2 + \Delta^2}}{2}t
ight) = rac{\chi^2}{\Omega^2} \sin^2\left(rac{\Omega}{2}t
ight)$$

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- ullet Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und Ion festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- ullet Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und Ion festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- ullet Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und Ion festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- ullet Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und Ion festgelegt.

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

ullet Beschreibung der Störung durch Hamiltonoperator \hat{H}_{las} :

$$\hat{H} = \hat{H}_0 + \hat{H}_{las}$$

- ullet Wähle Eigensystem von \hat{H}_0 als Basis
- Zeitentwicklung der Zustände $|\Psi'\rangle = e^{-i\hat{H}_0t}|\Psi\rangle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

ullet Beschreibung der Störung durch Hamiltonoperator \hat{H}_{las} :

$$\hat{H}=\hat{H}_0+\hat{H}_{las}$$

- ullet Wähle Eigensystem von \hat{H}_0 als Basis
- Zeitentwicklung der Zustände $|\Psi'\rangle = e^{-i\hat{H}_0t}|\Psi\rangle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

ullet Beschreibung der Störung durch Hamiltonoperator \hat{H}_{las} :

$$\hat{H}=\hat{H}_0+\hat{H}_{las}$$

- ullet Wähle Eigensystem von \hat{H}_0 als Basis
- ullet Zeitentwicklung der Zustände $|\Psi'
 angle=e^{-i\hat{H}_0t}|\Psi
 angle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Näherungen

Lamb-Dicke-Limit:

Rückstoßenergie des Photons \ll Schwingungsenergie des Phonons. Elektronische Übergänge mit $\Delta=0$ stören die Phononen <u>nicht!</u>

Lamb-Dicke Parameter
$$\eta = \sqrt{rac{\omega_{recoil}}{\omega_{trap}}} \ll 1$$

• Weak excitation limit:

Für schwache Laserintensitäten wird nur <u>eine</u> Schwingungsmode angeregt!

Näherungen

Lamb-Dicke-Limit:

Rückstoßenergie des Photons \ll Schwingungsenergie des Phonons. Elektronische Übergänge mit $\Delta=0$ stören die Phononen <u>nicht!</u>

Lamb-Dicke Parameter
$$\eta = \sqrt{rac{\omega_{recoil}}{\omega_{trap}}} \ll 1$$

• Weak excitation limit:

Für schwache Laserintensitäten wird nur <u>eine</u> Schwingungsmode angeregt!

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}^n_{rot} = \frac{\Omega_{rot}}{2} (\sigma^+_n e^{-i\Phi} + \sigma^-_n e^{i\Phi}) \quad \text{wähle } t = \frac{k\pi}{\Omega_{rot}}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_n \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_n - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_n$$
 $|e\rangle_n \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_n - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_n$

• Beispiel NOT-Gate $(k=1, \Phi=\frac{\pi}{2})$:

$$|g\rangle_n \rightarrow |e\rangle_n \\ |e\rangle_n \rightarrow -|g\rangle_n$$

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}_{rot}^{n} = \frac{\Omega_{rot}}{2} (\sigma_{n}^{+} e^{-i\Phi} + \sigma_{n}^{-} e^{i\Phi})$$
 wähle $t = \frac{k\pi}{\Omega_{rot}}$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n} - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}$$
 $|e\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n} - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}$

• Beispiel NOT-Gate $(k = 1, \Phi = \frac{\pi}{2})$:

$$|g\rangle_n \rightarrow |e\rangle_n \\ |e\rangle_n \rightarrow -|g\rangle_n$$

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}_{rot}^{n} = \frac{\Omega_{rot}}{2} (\sigma_{n}^{+} e^{-i\Phi} + \sigma_{n}^{-} e^{i\Phi})$$
 wähle $t = \frac{k\pi}{\Omega_{rot}}$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_n \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_n - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_n$$
 $|e\rangle_n \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_n - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_n$

• Beispiel NOT-Gate $(k=1, \Phi=\frac{\pi}{2})$: $|g\rangle_n \rightarrow |e\rangle_n$ $|e\rangle_n \rightarrow -|g\rangle_n$

• Anregung eines Ions im Seitenband:

$$\hat{H}_{es}^{n} = \frac{\Omega_{es}}{2\sqrt{N}} \eta (a\sigma_{n}^{+} e^{-i\Phi} + a^{\dagger}\sigma_{n}^{-} e^{i\Phi}) \quad \text{wähle } t = k\pi \left(\frac{\Omega_{es}}{\sqrt{N}}\eta\right)^{-1}$$

• Zeitentwicklung durch $k\pi$ -Puls

$$|g\rangle_{n}|1\rangle \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle$$

$$|e\rangle_{n}|0\rangle \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle$$

$$|g\rangle_{n}|0\rangle \rightarrow |g\rangle_{n}|0\rangle$$

• Anregung eines Ions im Seitenband:

$$\hat{H}_{es}^{n} = \frac{\Omega_{es}}{2\sqrt{N}} \eta (a\sigma_{n}^{+} e^{-i\Phi} + a^{\dagger}\sigma_{n}^{-} e^{i\Phi}) \quad \text{wähle } t = k\pi \left(\frac{\Omega_{es}}{\sqrt{N}}\eta\right)^{-1}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_{n}|1\rangle \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle$$

$$|e\rangle_{n}|0\rangle \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle$$

$$|g\rangle_{n}|0\rangle \rightarrow |g\rangle_{n}|0\rangle$$

Übersicht

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- **1** π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$
- ② 2π -Puls auf t: Phasenänderung des target bit $(\Phi = 0, k = 2\pi)$
- **3** π -Puls auf c: Kopie der Schwingungsmode auf das control bit $(\Phi = 0, k = \pi)$

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$
- 2 2π -Puls auf t: Phasenänderung des target bit $(\Phi = 0, k = 2\pi)$
- **3** π -Puls auf c: Kopie der Schwingungsmode auf das control bit $(\Phi = 0, k = \pi)$

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$
- **2** 2π -Puls auf t: Phasenänderung des target bit $(\Phi = 0, k = 2\pi)$
- **3** π -Puls auf c: Kopie der Schwingungsmode auf das control bit $(\Phi = 0, k = \pi)$

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$
- **2** 2π -Puls auf t: Phasenänderung des target bit $(\Phi = 0, k = 2\pi)$
- **3** π -Puls auf c: Kopie der Schwingungsmode auf das control bit $(\Phi = 0, k = \pi)$

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode ($\Phi = 0, k = \pi$)
- 2 π -Puls auf t: Phasenänderung des target bit $(\Phi = 0, k = 2\pi)$
- **3** π -Puls auf c: Kopie der Schwingungsmode auf das control bit $(\Phi = 0, k = \pi)$

Betrachte:

$$|\pm
angle=rac{1}{\sqrt{2}}(|g
angle\pm|e
angle)$$

Phasengatter zusammengefasst:

$$\begin{array}{ccc} |g\rangle_c|\pm\rangle_t & \to & |g\rangle_c|\pm\rangle_t \\ |e\rangle_c|\pm\rangle_t & \to & |g\rangle_c|\mp\rangle_t \end{array}$$

Komplettes CNOT-Gatter

Rotation
$$\hat{U}^c_{rot}$$
 + Phasengatter \hat{U}^t_{pg}

$$\hat{U}_{cnot} = \hat{U}_{rot,c}^{-1} \; \hat{U}_{pg,t} \; \hat{U}_{rot,c}$$

Fünf Minuten Pause!