Realisierung eines Quantencomputers mit Ionen

Fabian Bach, Jan-Philip Gehrcke, Malte Lichtner

Julius-Maximilians-Universität Würzburg

8. Mai 2008

🚺 Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- \bullet Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten
- Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - \bullet Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
 - Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
 - Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

- 🚺 Teil I Grundlagen
 - Motivation Quantencomputer
 - Logische Operationen
 - Anforderungen bei experimenteller Realisierung
 - \bullet Die Idee von CIRAC und ZOLLER
 - grundlegende Komponenten
- 2 Teil II Operationen auf dem System
 - Manipulation des Systems
 - Mathematische Beschreibung
 - CNOT-Gatter
- 3 Teil III Experimente
 - Realisierung des cNOT-Gatters
 - Untersuchung von verschränkten Zuständen
 - Ausblick (Ionenfalle im Mikrochip)

🕨 Teil I - Grundlagen

• Motivation Quantencomputer

- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

2 Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

Warum Quantencomputer?

Durch Superposition und Verschränkung von quantenmechanischen Zuständen können einige Probleme in der Informatik wesentlich effizienter gelöst werden, als mit klassischen Computern.

Warum ist das so?

Warum Quantencomputer?

Durch Superposition und Verschränkung von quantenmechanischen Zuständen können einige Probleme in der Informatik wesentlich effizienter gelöst werden, als mit klassischen Computern.

Warum ist das so?

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- \bullet Dirac-Notation $|0\rangle$ und $|1\rangle$

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- \bullet Dirac-Notation $|0\rangle$ und $|1\rangle$

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- \bullet Dirac-Notation $|0\rangle$ und $|1\rangle$

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- \bullet Dirac-Notation $|0\rangle$ und $|1\rangle$

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Was ist ein Qubit?

- quantenmechanisches Zwei-Niveau-System
- \bullet Dirac-Notation $|0\rangle$ und $|1\rangle$

$$\Psi_{QB} = c_0 \ket{0} + c_1 \ket{1}$$

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $\ket{00},\ket{01},\ket{10},\ket{11}$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

• Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$

• Es ergibt sich also als Zustandsraumbasis $\ket{00}, \ket{01}, \ket{10}, \ket{11}$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- $\bullet~$ Es ergibt sich also als Zustandsraumbasis $\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $\ket{00},\ket{01},\ket{10},\ket{11}$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

Basis des Zustandsraums eines Quantenregisters aus zwei Qubits

- Produktbasis aus den einzelnen Qubit-Basen bilden: $|0\rangle \otimes |0\rangle = |00\rangle, \dots, |1\rangle \otimes |1\rangle = |11\rangle$
- Es ergibt sich also als Zustandsraumbasis $\ket{00},\ket{01},\ket{10},\ket{11}$

Es gilt analog zum Q-Bit:

Der Zustand des Quantenregisters ist wiederum eine Superposition dieser Basiszustände mit komplexen Koeffizienten.

Daraus folgt:

$\mathsf{Quantenregister} \Leftrightarrow \mathsf{klassisches} \; \mathsf{Register}$

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \ket{b}$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

$\mathsf{Quantenregister} \Leftrightarrow \mathsf{klassisches} \; \mathsf{Register}$

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \ket{b}$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

$\mathsf{Quantenregister} \Leftrightarrow \mathsf{klassisches} \; \mathsf{Register}$

klassischer Computer mit N-Bit-Register

Registerzustand ist einer von 2^N Elementen des Zustandsraums.

Quantencomputer mit N-Qubit-Register

Registerzustand Ψ_{QR} ist ein (normierter) Vektor aus \mathbb{C}^{2^N} :

$$\Psi_{QR} = \sum_{b=0}^{2^N-1} c_b \ket{b}$$

Das Superpositionsprinzip beim Quantenregister ermöglicht daher eine gewisse "Parallelität in Rechnungen" durch "gleichzeitiges" Rechnen aller 2^N klassischen Registerzustände.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel:

 $\Psi_{QR} = rac{1}{\sqrt{2}} \left(\ket{00} + \ket{11}
ight)$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel:

$$\Psi_{QR} = rac{1}{\sqrt{2}} \left(\ket{00} + \ket{11}
ight)$$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

verschränkte Zustände

Für das Quantencomputing sind insbesondere die verschränkten Zustände eines Quantenregisters von Bedeutung.

Beispiel:

$$\Psi_{QR} = rac{1}{\sqrt{2}} \left(\ket{00} + \ket{11}
ight)$$

Registerzustand nicht in Teilsystem-Zustände faktorisierbar. Misst man hier ein Qubit aus, so ist der Zustand des anderen festgelegt.

Durch verschränkte Zustände kann eine maximale Korrelation zwischen Qubits eines Quantenregisters geschaffen werden. Diese Bit-Korrelationen erlauben die Realisierung von logischen Operationen.

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Quantencomputer-Algorithmen sorgen bei speziellen Aufgaben für einen exponentiellen Geschwindigkeitsgewinn gegenüber klassischen Rechnern. Somit werden bestimmte Probleme überhaupt erst in endlicher Zeit lösbar.

- Quanten-Fouriertransformation (Shor,...)
- Quanten-Suchalgorithmen (Suche in unsortierter Datenbank,...)
- Quanten-Simulation (Schrödingergleichung, unitäre Evolution)

Teil I - Grundlagen

• Motivation Quantencomputer

Logische Operationen

- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

2 Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) \Rightarrow cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) \Rightarrow Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) \Rightarrow cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) ⇒ Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) \Rightarrow cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) \Rightarrow Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Jede komplexe logische Operation kann man zerlegen in:

- XOR (klassisch) \Rightarrow cNOT-Verknüpfung/Gatter zwischen zwei Qubits
- NOT (klassisch) \Rightarrow Rotationen einzelner Qubits (auf Blochsphäre)

Daraus folgt:

Die controlled-NOT Verknüpfung

formale Definition:

 \hat{C}_{12} : $|\epsilon_1\rangle |\epsilon_2\rangle \rightarrow |\epsilon_1\rangle |\epsilon_1 \oplus \epsilon_2\rangle$ mit \oplus : Addition modulo 2

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Die controlled-NOT Verknüpfung

CC

formale Definition:

 \hat{C}_{12} : $|\epsilon_1\rangle |\epsilon_2\rangle \rightarrow |\epsilon_1\rangle |\epsilon_1 \oplus \epsilon_2\rangle$ mit \oplus : Addition modulo 2

$$|0\rangle|0\rangle \rightarrow |0\rangle|0\rangle$$
$$|0\rangle|1\rangle \rightarrow |0\rangle|1\rangle$$
$$|1\rangle|0\rangle \rightarrow |1\rangle|1\rangle$$
$$|1\rangle|1\rangle \rightarrow |1\rangle|0\rangle$$
$$11\rangle|1\rangle \rightarrow |1\rangle|0\rangle$$

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Logische Operationen

Die controlled-NOT Verknüpfung

formale Definition:

 \hat{C}_{12} : $|\epsilon_1\rangle |\epsilon_2\rangle \rightarrow |\epsilon_1\rangle |\epsilon_1 \oplus \epsilon_2\rangle$ mit \oplus : Addition modulo 2

XOR

$$|0\rangle|0\rangle \rightarrow |0\rangle|0\rangle$$

 $|0\rangle|1\rangle \rightarrow |0\rangle|1\rangle$
 $|1\rangle|0\rangle \rightarrow |1\rangle|1\rangle$
 $|1\rangle|1\rangle \rightarrow |1\rangle|0\rangle$
control bit target bit

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung
Logische Operationen

Die controlled-NOT Verknüpfung

con

formale Definition:

 $\hat{\mathcal{C}}_{12}: \ket{\epsilon_1}\ket{\epsilon_2} \to \ket{\epsilon_1}\ket{\epsilon_1 \oplus \epsilon_2} \text{ mit } \oplus: \text{Addition modulo } 2$

XOR

$$|0\rangle|0\rangle \rightarrow |0\rangle|0\rangle$$

 $|0\rangle|1\rangle \rightarrow |0\rangle|1\rangle$
 $|1\rangle|0\rangle \rightarrow |1\rangle|1\rangle$
 $|1\rangle|1\rangle \rightarrow |1\rangle|0\rangle$
trol bit target bit

die cNOT-Verknüpfung entspricht also der klassischen XOR-Verknüpfung

Übersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen

• Anforderungen bei experimenteller Realisierung

- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

- ein(mehrere) Qubit(s)
- die Möglichkeit alle Qubits zu initialisieren
- eine exp. Realisierung Rotation einzelner Qubits
- eine exp. Realisierung des cNOT-Gatters (durch Qubit-Kopplung)
- lange Kohärenzzeiten (länger als die "Rechenzeit")
- die Möglichkeit einzelne Qubits zu messen (Ergebnisabfrage)
- ein skalierbares System (also prinzipiell beliebig erweiterbar)

Es gibt verschiedene Ansätze

überwiegend theor. Konzept; Realisierungen auf kleinem Maßstab erfolgt: ... zum Beispiel mit Kernspinresonanz (2001: Shors Algorithmus auf 7-Qubit-Quantencomputer $\Rightarrow 15 = 3 \cdot 5$) - aber: **nicht skalierbar**

Übersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung

\bullet Die Idee von CIRAC und ZOLLER

grundlegende Komponenten

2 Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions ($\rm CIRAC$ and $\rm ZOLLER,$ Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ullet ein $\hat{}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions ($\rm CIRAC$ and $\rm ZOLLER,$ Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

Quantum Computations with Cold Trapped Ions (CIRAC and ZOLLER, Phys. Rev. Lett., 1995)

- Ionen werden in einer PAUL-Falle im UHV "gefangen" und gekühlt
- ein Ion $\hat{=}$ ein Qubit (metastab. elektr. Übergang)
- Ionen werden mit Laserlicht manipuliert
- Ionen sind untereinander durch Phononen gekoppelt

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

• Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)

- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

- Dekohärenz vernachlässigbar klein (optische Kommunikation, UHV, Kühlung)
- durch Ion-Ion-Kopplung können Qubit-Gatter realisiert werden
- Messungen können mit hoher Effizienz durchgeführt werden
- skalierbar

Übersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

2 Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle :

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle :

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle :

• ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)

• Erweiterung zur linearen Version

EARNSHAW-Theorem:

"Statische Felder können eine Ladung nicht stabil einfangen."

Lösung mit PAUL-Falle :

- ursprüngliche Version (Nobelpreis 1989 an WOLFGANG PAUL)
- Erweiterung zur linearen Version

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

- es gibt eine (z-) Achse f
 ür die das "Pseudopotential" minimal ist
- ullet radiale Schwingungsmoden $(\omega_{{f x},y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Oszillierendes Wechselfeld erzeugt "Pseudopotential". Querschnitt:

- es gibt eine (z-) Achse für die das "Pseudopotential" minimal ist
- radiale Schwingungsmoden $(\omega_{x,y})$ existieren mit geringer Amplitude

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mit Eigenfrequenzen ω_z).

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mit Eigenfrequenzen ω_z).

Statisches Potential in z-Richtung

Zwei Endkappen auf gleichem (hohem) Potential sperren Ionen ein:

Verlauf des statischen Potentials:

Harmonische Näherung liefert axiale Schwingungsmoden (mit Eigenfrequenzen ω_z).

Ausgewählte axiale Schwingungsmoden

"center of mass" - Mode

"breathing" - Mode

Idee: einzelnes COM-Phonon soll als "Bus" dienen mit $n \in \{0,1\}$

Ausgewählte axiale Schwingungsmoden

"center of mass" - Mode

"breathing" - Mode

Idee: einzelnes COM-Phonon soll als "Bus" dienen mit $n \in \{0, 1\}$
Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale K
 ühlung auf n = 0 initialisiert werden k
 önnen
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale K
 ühlung auf n = 0 initialisiert werden k
 önnen
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- \Rightarrow **Dopplerkühlung** (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale K
 ühlung auf n = 0 initialisiert werden k
 önnen
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- → Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale Kühlung auf *n* = 0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ⇒ Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale Kühlung auf *n* = 0 initialisiert werden können
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ⇒ Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale K
 ühlung auf n = 0 initialisiert werden k
 önnen
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Radialmoden:

- in den radialen Moden muss so wenig Energie wie möglich stecken (Dekohärenz minimieren!)
- ⇒ Dopplerkühlung (mit Lasern) ermöglicht Impulsminimierung von Atomen und sichere Kühlung auf unter 1 K

- die "Busmode" soll nur im Grundzustand n = 0 oder n = 1 vorliegen
- das System muss also durch maximale K
 ühlung auf n = 0 initialisiert werden k
 önnen
- ⇒ Seitenbandkühlung (mit Lasern) kann dazu verwendet werden, n sukzessive auf 0 zu erniedrigen.

Ein Laserstrahl wird leicht rotverschoben bezüglich eines ausgewählten Übergangs auf ein Atom eingestrahlt:

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

- Absorption nur, wenn Atombewegung in Richtung der einfallenden Photonen
- bei spontaner Emission wird dann Energie aus der Bewegung genommen
- Impulsbetrachtung: gerichteter Impulsübertrag bei Anregung, isotrope Verteilung bei spontaner Emission ⇒ effektive Impulsreduzierung gegen Strahlrichtung

Durch zwei gegeneinanderlaufende Strahlen...

...ergibt sich die Fixierung eines Atoms in einer Dimension:

Durch zwei gegeneinanderlaufende Strahlen...

...ergibt sich die Fixierung eines Atoms in einer Dimension:

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

• O(100µK)

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

• O(100µK)

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

 Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar\gamma}{2k_B}$$

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar\gamma}{2k_B}$$

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar\gamma}{2k_B}$$

• $O(100 \mu K)$

Doppler-Limit:

- der Kühlprozess relaxiert in sein Gleichgewicht
- die tiefste erreichbare Temperatur heißt "Doppler-Limit"

Größenordnung:

• Limit T_{DL} hängt von der Zerfallsrate γ (Linienbreite) des Atomübergangs ab:

$$T_{DL} = \frac{\hbar\gamma}{2k_B}$$

• $O(100 \mu K)$

schwingendes Ion:

gleichzeitige Anregung von elektr. und Schwingungsübergang

Optisches Pumpen in den Schwingungsgrundzustand n = 0:

Nomenklatur:

Phonon: $|0\rangle$, $|1\rangle \triangleq |n = 0\rangle$, $|n = 1\rangle$ elektr. Zustand: $|g\rangle$, $|e\rangle \triangleq$ groundstate, excited

Optisches Pumpen in den Schwingungsgrundzustand n = 0:

Nomenklatur:

Phonon:
$$|0\rangle$$
, $|1\rangle \triangleq |n = 0\rangle$, $|n = 1\rangle$
elektr. Zustand: $|g\rangle$, $|e\rangle \triangleq$ groundstate, excited

Übersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

- Laser-Frequenz $(w, \omega, z) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
 - $\omega_{\rm s}$ determischer $\omega_{\rm s} = \omega_{\rm s} = \omega_{\rm s}$

χ: resonante
 Rabi-Frequenz
 ζ. = μ(5) / λ
 Xerstimmung des
 Laters (Δ. = ω) = ω
 Rabi-Frequenz
 Ω = β(3) - βζ

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission

QM: Oszillation der Besetzungswahrscheinlichkeiten

- Laser-Frequenz (z_1, ω_2) Laser-Frequenz (z_1, ω_2) (z_2, ω_3)
 - ω_{e} elektronischer Übergang $\omega_{e} = \omega_{e} = \omega_{e}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Laser-Frequenz (E.S. 65, 65, 65, 67, 100) (doltanischer

 $\mathbf{\ddot{U}}\mathbf{b}\mathbf{ergang}\,\omega=\omega_{e}-\omega_{e}$

resonante
 Rabi-Frequenz
 z=z,da/b
 Verstimmung des
 Lasers, A=w₁=w
 Rabi-Frequenz

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

- $\omega_L: \text{ Laser-Frequenz} \\ (E = E_0 \cos \omega t)$
 - ω : elektronischer Übergang $\omega = \omega_e - \omega_g$

 χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$ Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$ Ω : Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

 $\begin{array}{ll} \chi: \mbox{ resonante} \\ \mbox{ Rabi-Frequenz} \\ \chi=\mu E_0/\hbar \\ \mbox{ Verstimmung des} \\ \mbox{ Lasers } \Delta=\omega_L-\omega \\ \mbox{ Rabi-Frequenz} \\ \Omega=\sqrt{\chi^2+\Delta^2} \end{array}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

 $\begin{array}{ll} \chi: \mbox{ resonante} \\ \mbox{ Rabi-Frequenz} \\ \chi=\mu E_0/\hbar \\ \mbox{ Verstimmung des} \\ \mbox{ Lasers } \Delta=\omega_L-\omega \\ \mbox{ Rabi-Frequenz} \\ \Omega=\sqrt{\chi^2+\Delta^2} \end{array}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

 $\begin{array}{l} \chi: \mbox{ resonante} \\ \mbox{ Rabi-Frequenz} \\ \chi = \mu E_0/\hbar \\ \chi: \mbox{ Verstimmung des} \\ \mbox{ Lasers } \Delta = \omega_L - \omega \\ \chi: \mbox{ Rabi-Frequenz} \\ \Omega = \sqrt{\chi^2 + \Delta^2} \end{array}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ $\omega_L: \text{ Laser-Frequenz} (E = E_0 \cos \omega t)$ $\omega_L: \text{ algebra principles}$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$ λ : Verstimmung des Lasers $\Delta = \omega_L - \omega$ Ω : Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ $\omega_L: \text{ Laser-Frequenz} (E = E_0 \cos \omega t)$ $\omega_L: \text{ algebra principles}$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$ λ : Verstimmung des Lasers $\Delta = \omega_L - \omega$ Ω : Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$
Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ ω_L : Laser-Frequenz

 $(E = E_0 \cos \omega t)$ ω : elektronischer Übergang $\omega = \omega_e - \omega_e$ $\begin{array}{ll} \chi: \mbox{ resonante} \\ \mbox{ Rabi-Frequenz} \\ \chi=\mu E_0/\hbar \\ \Delta: \mbox{ Verstimmung des} \\ \mbox{ Lasers } \Delta=\omega_L-\omega \\ \Omega: \mbox{ Rabi-Frequenz} \\ \Omega=\sqrt{\chi^2+\Delta^2} \end{array}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ ω_l : Laser-Frequenz

 $(E = E_0 \cos \omega t)$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ $\begin{array}{ll} \chi: \mbox{ resonante} \\ \mbox{ Rabi-Frequenz} \\ \chi = \mu E_0/\hbar \\ \Delta: \mbox{ Verstimmung des} \\ \mbox{ Lasers } \Delta = \omega_L - \omega \\ \Omega: \mbox{ Rabi-Frequenz} \\ \Omega = \sqrt{\chi^2 + \Delta^2} \end{array}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ ω_L : Laser-Frequenz

 $(E = E_0 \cos \omega t)$ ω : elektronischer Übergang $\omega = \omega_e - \omega_\sigma$ χ : resonante Rabi-Frequenz $\chi=\mu E_0/\hbar$

- Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$
- Ω: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$ ω_l : Laser-Frequenz

 $(E=E_0\cos\omega t)$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$

- Δ : Verstimmung des Lasers $\Delta = \omega_L - \omega$
- Ω: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_e = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$

 $\omega_L: \text{ Laser-Frequenz}$ $(E = E_0 \cos \omega t)$

 ω : elektronischer Übergang $\omega = \omega_e - \omega_g$ χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$

 $\Delta: \text{ Verstimmung des} \\ \text{Lasers } \Delta = \omega_L - \omega$

Ω: Rabi-Frequenz $Ω = \sqrt{\chi^2 + \Delta^2}$

Periodische Störung eines 2-Niveau-Systems $\Psi = c_g |g\rangle + c_e |e\rangle$

klassisch: Absorption und stimulierte Emission QM: Oszillation der Besetzungswahrscheinlichkeiten

Rabi-Oszillation $c_{\rm e} = \frac{\chi}{\Omega} \sin \frac{\Omega}{2} t$

 $ω_L$: Laser-Frequenz $(E = E_0 \cos ωt)$ ω: elektronischer

Übergang $\omega = \omega_e - \omega_g$

 χ : resonante Rabi-Frequenz $\chi = \mu E_0/\hbar$

- $\Delta: \text{ Verstimmung des} \\ \text{Lasers } \Delta = \omega_L \omega$
- Ω: Rabi-Frequenz $\Omega = \sqrt{\chi^2 + \Delta^2}$

$$p_2(t) = c_e^2(t) = \frac{\chi^2}{\chi^2 + \Delta^2} \sin^2\left(\frac{\sqrt{\chi^2 + \Delta^2}}{2}t\right) = \frac{\chi^2}{\Omega^2} \sin^2\left(\frac{\Omega}{2}t\right)$$

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und lon festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und lon festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und lon festgelegt.

- Die Wechselwirkung mit dem Laser (über die Rabi-Oszillationen) dreht den Zustandsvektor auf der Blochkugel.
- Der Drehwinkel wird durch die Pulsdauer t (und die Rabi-Frequenz Ω) bestimmt.
- Die Drehachse wird durch die Phasenverschiebung ϕ zwischen Laser und lon festgelegt.

Übersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

• Beschreibung der Störung durch Hamiltonoperator \hat{H}_{las} :

$$\hat{H} = \hat{H}_0 + \hat{H}_{las}$$

• Wähle Eigensystem von \hat{H}_0 als Basis

• Zeitentwicklung der Zustände $|\Psi'
angle=e^{-i\hat{H}_0t}|\Psi
angle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

Beschreibung der Störung durch Hamiltonoperator Ĥ_{las}:

$$\hat{H} = \hat{H}_0 + \hat{H}_{las}$$

- Wähle Eigensystem von \hat{H}_0 als Basis
- Zeitentwicklung der Zustände $|\Psi'
 angle = e^{-i\hat{H}_0t}|\Psi
 angle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Laser-Ion-Phonon-Interaktion im Wechselwirkungsbild

• Beschreibung der Störung durch Hamiltonoperator \hat{H}_{las} :

$$\hat{H} = \hat{H}_0 + \hat{H}_{las}$$

- Wähle Eigensystem von \hat{H}_0 als Basis
- Zeitentwicklung der Zustände $|\Psi'
 angle=e^{-i\hat{H}_0t}|\Psi
 angle$:

$$\hat{U} = e^{i\hat{H}_{las}t}$$

Näherungen

• Lamb-Dicke-Limit:

Rückstoßenergie des Photons \ll Schwingungsenergie des Phonons. Elektronische Übergänge mit $\Delta = 0$ stören die Phononen <u>nicht</u>!

Lamb-Dicke Parameter $\eta = \sqrt{rac{\omega_{recoil}}{\omega_{trap}}} \ll 1$

• Weak excitation limit:

Für schwache Laserintensitäten wird nur <u>eine</u> Schwingungsmode angeregt!

Näherungen

• Lamb-Dicke-Limit:

Rückstoßenergie des Photons \ll Schwingungsenergie des Phonons. Elektronische Übergänge mit $\Delta = 0$ stören die Phononen <u>nicht</u>!

Lamb-Dicke Parameter $\eta = \sqrt{rac{\omega_{recoil}}{\omega_{trap}}} \ll 1$

• Weak excitation limit:

Für schwache Laserintensitäten wird nur <u>eine</u> Schwingungsmode angeregt!

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}_{rot}^{n} = \frac{\Omega_{rot}}{2} (\sigma_{n}^{+} e^{-i\Phi} + \sigma_{n}^{-} e^{i\Phi}) \quad \text{ wähle } t = \frac{k\pi}{\Omega_{rot}}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n} - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}$$
$$|e\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n} - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}$$

• Beispiel NOT-Gate $(k = 1, \Phi = \frac{\pi}{2})$: $|g\rangle_n \rightarrow$

$$|e
angle_n
ightarrow -|g
angle_n$$

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}_{rot}^{n} = \frac{\Omega_{rot}}{2} (\sigma_{n}^{+} e^{-i\Phi} + \sigma_{n}^{-} e^{i\Phi}) \quad \text{ wähle } t = \frac{k\pi}{\Omega_{rot}}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n} - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}$$
$$|e\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n} - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}$$

• Beispiel NOT-Gate $(k = 1, \Phi = \frac{\pi}{2})$:

$$|g\rangle_n \rightarrow |e\rangle_n$$

 $|e\rangle_n \rightarrow -|g\rangle_n$

• Resonante Anregung eines lons ($\Delta = 0$):

$$\hat{H}_{rot}^{n} = \frac{\Omega_{rot}}{2} (\sigma_{n}^{+} e^{-i\Phi} + \sigma_{n}^{-} e^{i\Phi}) \quad \text{ wähle } t = \frac{k\pi}{\Omega_{rot}}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$|g\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n} - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}$$
$$|e\rangle_{n} \rightarrow \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n} - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}$$

• Beispiel NOT-Gate $(k = 1, \Phi = \frac{\pi}{2})$:

$$|g\rangle_n \rightarrow |e\rangle_n$$

 $|e\rangle_n \rightarrow -|g\rangle_n$

• Anregung eines lons im Seitenband:

$$\hat{H}_{es}^{n} = \frac{\Omega_{es}}{2\sqrt{N}}\eta(\mathbf{a}\sigma_{n}^{+}e^{-i\Phi} + \mathbf{a}^{\dagger}\sigma_{n}^{-}e^{i\Phi}) \quad \text{ wähle } t = k\pi\left(\frac{\Omega_{es}}{\sqrt{N}}\eta\right)^{-1}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$\begin{aligned} |g\rangle_{n}|1\rangle &\to & \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle \\ |e\rangle_{n}|0\rangle &\to & \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle \\ |g\rangle_{n}|0\rangle &\to & |g\rangle_{n}|0\rangle \end{aligned}$$

• Anregung eines lons im Seitenband:

$$\hat{H}_{es}^{n} = \frac{\Omega_{es}}{2\sqrt{N}}\eta (\mathbf{a}\sigma_{n}^{+}e^{-i\Phi} + \mathbf{a}^{\dagger}\sigma_{n}^{-}e^{i\Phi}) \quad \text{ wähle } t = k\pi \left(\frac{\Omega_{es}}{\sqrt{N}}\eta\right)^{-1}$$

• Zeitentwicklung durch $k\pi$ -Puls:

$$\begin{aligned} |g\rangle_{n}|1\rangle &\to & \cos\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle - ie^{+i\Phi}\sin\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle \\ |e\rangle_{n}|0\rangle &\to & \cos\left(\frac{k\pi}{2}\right)|e\rangle_{n}|0\rangle - ie^{-i\Phi}\sin\left(\frac{k\pi}{2}\right)|g\rangle_{n}|1\rangle \\ |g\rangle_{n}|0\rangle &\to & |g\rangle_{n}|0\rangle \end{aligned}$$

Ubersicht

Teil I - Grundlagen

- Motivation Quantencomputer
- Logische Operationen
- Anforderungen bei experimenteller Realisierung
- Die Idee von CIRAC und ZOLLER
- grundlegende Komponenten

2 Teil II - Operationen auf dem System

- Manipulation des Systems
- Mathematische Beschreibung
- CNOT-Gatter

3 Teil III - Experimente

- Realisierung des cNOT-Gatters
- Untersuchung von verschränkten Zuständen
- Ausblick (Ionenfalle im Mikrochip)

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode ($\Phi = 0, k = \pi$)
- 2 π -Puls auf t: Phasenänderung des target bit ($\Phi = 0, \ k = 2\pi$)
- π-Puls auf c: Kopie der Schwingungsmode auf das control bit
 (Φ = 0, k = π)

Phasenänderung des target bits (t), wenn control bit (c) auf 1

• π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$

 e_{0}

- π -Puls auf c: Kopie des control bit auf die Schwingungsmode $(\Phi = 0, k = \pi)$
- **2** π -Puls auf t: Phasenänderung des target bit
 - $(\Phi = 0, k = 2\pi)$

- π-Puls auf c: Kopie des control bit auf die Schwingungsmode
 (Φ = 0, k = π)
- 2 π -Puls auf t: Phasenänderung des target bit ($\Phi = 0, \ k = 2\pi$)
- π-Puls auf c: Kopie der Schwingungsmode auf das control bit
 (Φ = 0, k = π)

- π-Puls auf c: Kopie des control bit auf die Schwingungsmode
 (Φ = 0, k = π)
- 2 π -Puls auf t: Phasenänderung des target bit ($\Phi = 0, \ k = 2\pi$)
- π-Puls auf c: Kopie der Schwingungsmode auf das control bit
 (Φ = 0, k = π)

Betrachte: $|\pm\rangle = \frac{1}{\sqrt{2}}(|g\rangle \pm |e\rangle)$

Phasengatter zusammengefasst:

$$\begin{array}{lll} |g\rangle_c|\pm\rangle_t & \to & |g\rangle_c|\pm\rangle_t \\ |e\rangle_c|\pm\rangle_t & \to & |g\rangle_c|\mp\rangle_t \end{array}$$

Komplettes CNOT-Gatter

Rotation
$$\hat{U}_{rot}^{c}$$
 + Phasengatter \hat{U}_{pg}^{t}
 $\hat{U}_{cnot} = \hat{U}_{rot,c}^{-1} \hat{U}_{pg,t} \hat{U}_{rot,c}$

Fünf Minuten Pause!