Diffusionstensor-Magnetresonanz-Tomographie des menschlichen Gehirns zur Rekonstruktion von Nervenfaserbahnen

Jan-Philip Gehrcke

Universität Würzburg

13. Juni 2008

- 2 Grundlagen MRT
- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

2 Grundlagen MRT

- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

- 1 Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- 3 MRT und Diffusion
 - 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- Jusammenfassung/Fazit

- 1 Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- Interpretation Interpretatio Interpretation Interpretation Interpretation Inte
- 4 Bestimmung und Interpretation des Diffusionstensors
 - 5 Experimente und Ergebnisse
 - Jusammenfassung/Fazit

- 1 Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- Interpretation Interpretation Interpretation Interpretation
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
 - Zusammenfassung/Fazit

- 1 Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- Interpretation 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

- 2 Grundlagen MRT
- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

- überwiegend Nervenzellen (Neuronen). Diese bestehen aus Zellkörpern (Soma) und faserartigen Nervenleitungen (Axone)
- graue Substanz: Hirnrinde; bestehend aus Soma
- weiße Substanz: innen; Axone der Neuronen
- Neuronen enthalten viel Wasser und somit Protonen

freie/eingeschränkte/anisotrope Diffusion im Gehirn

bei **Nervenfaserverfolgung** wird ausgenutzt: hohe Diffusionsanisotropie (durch Myelin) \leftrightarrow Nervenfasern.

Diffusionskoeffizient und Diffusionstensor

1. FICKsches Gesetz (isotrop) $\rightarrow D$ ist skalar

$$\vec{j} = -D\nabla\rho$$

1. FICKsches Gesetz (anisotrop) \rightarrow **D** ist Tensor (sym. 3 \times 3 - Matrix)

$$\vec{j} = -\mathbf{D}\nabla\rho$$

für **Nervenfaserverfolgung** ist es nötig, die Diffusivität innerhalb eines Voxels für alle Raumrichtungen zu beschreiben. Deswegen muss für jeden Voxel der Diffusionstensor **D** bestimmt werden.

Diffusionskoeffizient und Diffusionstensor

1. FICKsches Gesetz (isotrop) $\rightarrow D$ ist skalar

$$\vec{j} = -D\nabla\rho$$

1. FICKsches Gesetz (anisotrop) \rightarrow **D** ist Tensor (sym. 3 × 3 - Matrix)

$$\vec{j} = -\mathbf{D}\nabla\rho$$

für **Nervenfaserverfolgung** ist es nötig, die Diffusivität innerhalb eines Voxels für alle Raumrichtungen zu beschreiben. Deswegen muss für jeden Voxel der Diffusionstensor **D** bestimmt werden.

Diffusionskoeffizient und Diffusionstensor

1. FICKsches Gesetz (isotrop) $\rightarrow D$ ist skalar

$$\vec{j} = -D\nabla\rho$$

1. FICKsches Gesetz (anisotrop) \rightarrow **D** ist Tensor (sym. 3 × 3 - Matrix)

$$\vec{j} = -\mathbf{D}\nabla\rho$$

für **Nervenfaserverfolgung** ist es nötig, die Diffusivität innerhalb eines Voxels für alle Raumrichtungen zu beschreiben. Deswegen muss für jeden Voxel der Diffusionstensor **D** bestimmt werden.

2 Grundlagen MRT

- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 5 Zusammenfassung/Fazit

$\mathrm{LARMOR}\text{-}\mathsf{Frequenz}$

Spin- $\frac{1}{2}$ -Teilchen (Protonen) im externen B_0 -Feld:

- ΔE zwischen Spinzuständen $|\uparrow\rangle$ und $|\downarrow\rangle$ (ZEEMAN-Effekt)
- die entsprechende Resonanzfrequenz heißt LARMOR-Frequenz ω_L :

$$\omega_L = \gamma B_0$$

$\mathrm{LARMOR}\text{-}\mathsf{Frequenz}$

Spin- $\frac{1}{2}$ -Teilchen (Protonen) im externen B_0 -Feld:

• ΔE zwischen Spinzuständen $|\uparrow\rangle$ und $|\downarrow\rangle$ (ZEEMAN-Effekt)

• die entsprechende Resonanzfrequenz heißt LARMOR-Frequenz ω_L :

$$\omega_L = \gamma B_0$$

$\mathrm{LARMOR}\text{-}\mathsf{Frequenz}$

Spin- $\frac{1}{2}$ -Teilchen (Protonen) im externen B_0 -Feld:

- ΔE zwischen Spinzuständen $|\uparrow\rangle$ und $|\downarrow\rangle$ (ZEEMAN-Effekt)
- die entsprechende Resonanzfrequenz heißt LARMOR-Frequenz ω_L :

$$\omega_L = \gamma B_0$$

makroskopische Magnetisierung \vec{M}

genügend große Magnetfelder \rightarrow makroskopische Magnetisierung \vec{M} \vec{M} im Gleichgewichtszustand in *z*-Richtung

Manipulation von \vec{M} mit $\vec{B}_{HF}(t)$ nach LANDAU-LIFSCHITZ-Gleichung: $\frac{d\vec{M}}{dt} = \gamma \vec{M} \times (\vec{B}_0 + \vec{B}_{HF}(t))$

→ liefert Form der Hochfrequenzpulse bzw. α -Pulse: kippen der Magnetisierung um einen Winkel α zur z – Achse

makroskopische Magnetisierung \vec{M}

genügend große Magnetfelder \rightarrow makroskopische Magnetisierung \vec{M} \vec{M} im Gleichgewichtszustand in *z*-Richtung

Manipulation von \vec{M} mit $\vec{B}_{HF}(t)$ nach LANDAU-LIFSCHITZ-Gleichung: $\frac{d\vec{M}}{dt} = \gamma \vec{M} \times (\vec{B}_0 + \vec{B}_{HF}(t))$

 \rightarrow liefert Form der Hochfrequenzpulse bzw. α -Pulse: kippen der Magnetisierung um einen Winkel α zur z - Achs

makroskopische Magnetisierung \vec{M}

genügend große Magnetfelder \rightarrow makroskopische Magnetisierung \vec{M} \vec{M} im Gleichgewichtszustand in *z*-Richtung

Manipulation von \vec{M} mit $\vec{B}_{HF}(t)$ nach LANDAU-LIFSCHITZ-Gleichung: $\frac{d\vec{M}}{dt} = \gamma \vec{M} \times (\vec{B}_0 + \vec{B}_{HF}(t))$

 \rightarrow liefert Form der Hochfrequenzpulse bzw. α -Pulse:

kippen der Magnetisierung um einen Winkel α zur z - Achse

Messsignal

Präzession der Magnetisierung um z-Achse mit ω_L :

wenn transversale Komponenten $M_{x,y}$ vorhanden, dann messbar als abgestrahltes Wechselfeld \rightarrow Messgröße $S(t) \propto \mid \vec{M}_{xy} \mid$

Relaxationen

T_1 : regeneriert $M_z \rightarrow \max$.

 T_2^* : transversale Komponenten $M_{x,y} \rightarrow 0$

BLOCH-Gleichung (erweiterte LANDAU-LIFSCHITZ-Gleichung):

$$rac{dec{M}_0}{dt} = \gamma ec{M}_0 imes ec{B} - rac{(M_z - M_0)ec{e}_z}{T_1} - rac{ec{M}_{xy}}{T_2^*}$$

Relaxationen

- T_1 : regeneriert $M_z \rightarrow \max$.
- T_2^* : transversale Komponenten $M_{x,y} \to 0$

BLOCH-Gleichung (erweiterte LANDAU-LIFSCHITZ-Gleichung): $\frac{d\vec{M}_0}{dt} = \gamma \vec{M}_0 \times \vec{B} - \frac{(M_z - M_0)\vec{e}_z}{T_1} - \frac{\vec{M}_{xy}}{T_2^*}$

Relaxationen

 T_1 : regeneriert $M_z \rightarrow \max$.

 T_2^* : transversale Komponenten $M_{x,y} \to 0$

BLOCH-Gleichung (erweiterte LANDAU-LIFSCHITZ-Gleichung):

$$rac{dec{M}_0}{dt} = \gamma ec{M}_0 imes ec{B} - rac{(M_z - M_0)ec{e}_z}{T_1} - rac{ec{M}_{xy}}{T_2^*}$$

Spinecho (SE)-Sequenz

Gradientenfelder und Ortskodierung

Durch $\vec{G}(\vec{r})$ wird ω_L ortsabhängig: $\omega_L = \gamma B_0 + \gamma \vec{G} \cdot \vec{r}$

\rightarrow z.B. Ortskodierung:

Bestimmung des Messsignals S(t) für einzelne Voxel

Gradientenfelder und Ortskodierung

Durch $\vec{G}(\vec{r})$ wird ω_L ortsabhängig: $\omega_L = \gamma B_0 + \gamma \vec{G} \cdot \vec{r}$

\rightarrow z.B. Ortskodierung:

Bestimmung des Messsignals S(t) für einzelne Voxel

- Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- Interpretation 3 MRT und Diffusion
 - 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

- 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase
- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- → Abfall des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes

Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

- 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase
- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- $\bullet \rightarrow$ Abfall des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes

Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

• 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase

- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- $\bullet \rightarrow$ Abfall des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes
Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

- 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase
- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- $\bullet \rightarrow$ Abfall des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes

Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

- 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase
- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- $\bullet \rightarrow$ Abfall des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes

Sensibilisierung einer MRT-Sequenz für Diffusion

Erweiterung der SE-Sequenz nach STEIJSKAL und TANNER (1965):

- 1. Gradientenpuls: Aufprägen einer ortsabhängigen Phase
- 2. Gradientenpuls: Rephasierung (wg. 180°-Puls)
- Spins, welche sich in Gradientenfeldrichtung bewegt haben, werden nicht vollständig rephasiert (ω_L ortsabhängig!)
- $\bullet \to \mathsf{Abfall}$ des SE-Signals in Abhängigkeit der Diffusivität in Richtung des Gradientenfeldes

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung In $\left(\frac{S_{\overline{G}}(TE)}{S_0(TE)}\right)$ über *b*-Werten
- Ausgleichsgerade \rightarrow negative Steigung = D

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung $\ln \left(\frac{S_{\vec{G}}(TE)}{S_0(TE)}\right)$ über *b*-Werten
- Ausgleichsgerade \rightarrow negative Steigung = D

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung $\ln \left(\frac{S_{\vec{G}}(TE)}{S_0(TE)}\right)$ über *b*-Werten
- Ausgleichsgerade \rightarrow negative Steigung = D

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung $\ln \left(\frac{S_{\vec{G}}(TE)}{S_0(TE)}\right)$ über *b*-Werten
- Ausgleichsgerade \rightarrow negative Steigung = D

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

Bestimmung des Diffusionskoeffizienten:

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung $\ln \left(\frac{S_{\vec{G}}(TE)}{S_0(TE)} \right)$ über *b*-Werten

• Ausgleichsgerade \rightarrow negative Steigung = D

Lösung der BLOCH-TORREY-DGL für isotropen Fall (Diff.-Koeffizient D)

Für den relativen Signalabfall ergibt sich:

$$\frac{S_{\vec{G}}(TE)}{S_0(TE)} = e^{-bD} \quad \text{mit} \quad b = \gamma^2 \int_0^{TE} G(t)^2 dt$$

- mehrere Messungen mit verschiedenen b-Werten
- gewöhnlich: I) b = 0 II) $b \neq 0$
- Auftragung $\ln \left(\frac{S_{\vec{G}}(TE)}{S_0(TE)}\right)$ über *b*-Werten
- Ausgleichsgerade \rightarrow negative Steigung = D

Übersicht

- Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- Jusammenfassung/Fazit

- **D** ist symmetrische 3×3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{|\vec{G}_i|}$$

- **D** ist symmetrische 3×3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{|\vec{G}_i|}$$

- **D** ist symmetrische 3×3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{\mid \vec{G}_i \mid}$$

- D ist symmetrische 3 × 3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{|\vec{G}_i|}$$

- D ist symmetrische 3 × 3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{\mid \vec{G}_i \mid}$$

- D ist symmetrische 3 × 3 Matrix
- sechs unabhängige Komponenten müssen bestimmt werden
- beschriebenes Experiment muss mit mindestens 6 linear unabhängigen *G_i* wiederholt werden

Gleichungssystem für anisotropen Fall (aus BLOCH-TORREY-DGL):

$$\ln\left(\frac{S_{\vec{G}_i}}{S_0}\right) = -b_i \vec{g}_i^T \mathbf{D} \vec{g}_i \quad \text{mit} \quad \vec{g}_i = \frac{\vec{G}_i}{\mid \vec{G}_i \mid}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Diagonalisierung des Tensors liefert universelle Größen für Voxel:

- größter Eigenwert entspricht D in Faserrichtung
- kleinster Eigenwert entspricht D senkrecht dazu
- Eigenvektor zum größten Eigenwert \rightarrow Main Diffusion Direction (MDD)
- Apparent Diffusion Coefficient (ADC) ist Maß für Diffusivität:

$$ADC = \overline{\lambda} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$$

$$FA = \sqrt{\frac{3}{2} \frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Anwendungsbeispiel aus der Klinik

ADC-Map kurz nach Schlaganfall:

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- ... Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- … Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- … Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- … Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- … Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- ... Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- ... Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- ... Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Nervenfaserverfolgung:

- Aufnahme eines kompletten Tensordatensatzes eines Gehirns
- einem Algorithmus wird dann ein Startgebiet vorgegeben
- ausgehend von diesem werden Wege unter Beachtung von Abbruchkriterien gesucht
- Abbruchkriterien z.B. FA < const und α(alteMDD, neueMDD) > const

- ... Vorbereitung von kritischen OPs im Gehirn
- ... Erforschung von Erkrankungen des ZNS
- ... Erforschung der Funktionsweise des Gehirns

Übersicht

- Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
 - Zusammenfassung/Fazit

Das experimentelle Setup

- schnell durch single-shot Technik (eine Anregung, komplette Schichtakquisition mit stimulierten Echos STE)
- anatomie-getreu (keine Artefakte durch Suszeptibilitätsschwankungen)
- wegen single-shot und STE schlechtes SNR

Das experimentelle Setup

- schnell durch single-shot Technik (eine Anregung, komplette Schichtakquisition mit stimulierten Echos STE)
- anatomie-getreu (keine Artefakte durch Suszeptibilitätsschwankungen)
- wegen single-shot und STE schlechtes SNR

Das experimentelle Setup

- schnell durch single-shot Technik (eine Anregung, komplette Schichtakquisition mit stimulierten Echos STE)
- anatomie-getreu (keine Artefakte durch Suszeptibilitätsschwankungen)
- wegen single-shot und STE schlechtes SNR
Das experimentelle Setup

- schnell durch single-shot Technik (eine Anregung, komplette Schichtakquisition mit stimulierten Echos STE)
- anatomie-getreu (keine Artefakte durch Suszeptibilitätsschwankungen)
- wegen single-shot und STE schlechtes SNR

Das experimentelle Setup

das Gradientenschema (entwickelt am MPI Göttigen):

24 bidirektionale Gradientenfelder (12 linear unabhängige Richtungen)

Anatomie:

- verbindet linke mit rechter Hemisphäre
- hohe Anisotropie und damit hohe FA-Werte
- grober anatomischer Aufbau bekannt (Kontrollmöglichkeit)
- $\bullet \ \rightarrow$ eignet sich gut zu Testzwecken

Anatomie:

• verbindet linke mit rechter Hemisphäre

- hohe Anisotropie und damit hohe FA-Werte
- grober anatomischer Aufbau bekannt (Kontrollmöglichkeit)
- $\bullet \rightarrow$ eignet sich gut zu Testzwecken

Anatomie:

- verbindet linke mit rechter Hemisphäre
- hohe Anisotropie und damit hohe FA-Werte

grober anatomischer Aufbau bekannt (Kontrollmöglichkeit)

 $\bullet \rightarrow$ eignet sich gut zu Testzwecken

Anatomie:

- verbindet linke mit rechter Hemisphäre
- hohe Anisotropie und damit hohe FA-Werte
- grober anatomischer Aufbau bekannt (Kontrollmöglichkeit)
- $\bullet \rightarrow$ eignet sich gut zu Testzwecken

Anatomie:

- verbindet linke mit rechter Hemisphäre
- hohe Anisotropie und damit hohe FA-Werte
- grober anatomischer Aufbau bekannt (Kontrollmöglichkeit)
- $\bullet \rightarrow$ eignet sich gut zu Testzwecken

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- \bullet jede Schicht wird 24 mal mit $b=1000\frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

ein paar Daten einer gewöhnlichen Messung...

• Hauptmagnetfeld: 3 T

- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Hauptmagnetfeld: 3 T
- Sequenz: tSTEAM bei $2 mm \times 2 mm \times 2 mm$ isotroper Auflösung
- 50 Schichten
- jede Schicht wird einmal mit $b = 0 \frac{s}{mm^2}$ vermessen (b_0 -Bild)
- jede Schicht wird 24 mal mit $b = 1000 \frac{s}{mm^2}$ vermessen
- Gesamtzeit dann: 9:40 min

- Mittsagittale Schicht; MDD-Karte vor Anatomiehintergrund; FA > 0.15; CC als Startgebiet markiert
- 2) Frontansicht Fibertrack mit Startgebiet aus 1)
- 3) linke Seitenansicht Fibertrack mit Anatomie
- 4) rechte Seitenansicht Fibertrack mit Anatomie

 Mittsagittale Schicht; MDD-Karte vor Anatomiehintergrund; FA > 0.15; CC als Startgebiet markiert

- 2) Frontansicht Fibertrack mit Startgebiet aus 1)
- 3) linke Seitenansicht Fibertrack mit Anatomie
- 4) rechte Seitenansicht Fibertrack mit Anatomie

- Mittsagittale Schicht; MDD-Karte vor Anatomiehintergrund; FA > 0.15; CC als Startgebiet markiert
- 2) Frontansicht Fibertrack mit Startgebiet aus 1)
- 3) linke Seitenansicht Fibertrack mit Anatomie
- 4) rechte Seitenansicht Fibertrack mit Anatomie

- Mittsagittale Schicht; MDD-Karte vor Anatomiehintergrund; FA > 0.15; CC als Startgebiet markiert
- 2) Frontansicht Fibertrack mit Startgebiet aus 1)
- 3) linke Seitenansicht Fibertrack mit Anatomie
- 4) rechte Seitenansicht Fibertrack mit Anatomie

- Mittsagittale Schicht; MDD-Karte vor Anatomiehintergrund; FA > 0.15; CC als Startgebiet markiert
- 2) Frontansicht Fibertrack mit Startgebiet aus 1)
- 3) linke Seitenansicht Fibertrack mit Anatomie
- 4) rechte Seitenansicht Fibertrack mit Anatomie

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- 3) Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

Die Qualität/Zuverlässigkeit der bestimmten Diffusionstensoren soll verbessert werden. Dies ist die Basis für erfolgreiche Nervenfaserverfolgung.

Möglichkeiten außerhalb von Sequenz und Hardware:

- 1) Mittelung ganzer Diffusionsdatensätze (Rauschen $\propto \sqrt{N}$)
- 2) Optimierung der Diffusionswichtung
- 3) Mittelung der nicht diffusionsgewichteten Bilder (Verbesserung der Referenz)

Problem:

- Messung: $9 \times b = 0$, $1 \times b = 500$, $1 \times b = 1000$
- Erstellung von Datensätzen mit $1, 3, 5, 7, 9 \ b_0$ -Bildern
- gleiche Auswertung aller Datensätze (selbe Startgebiete)

- Messung: $9 \times b = 0$, $1 \times b = 500$, $1 \times b = 1000$
- Erstellung von Datensätzen mit $1, 3, 5, 7, 9 \ b_0$ -Bildern
- gleiche Auswertung aller Datensätze (selbe Startgebiete)

- Messung: $9 \times b = 0$, $1 \times b = 500$, $1 \times b = 1000$
- Erstellung von Datensätzen mit $1, 3, 5, 7, 9 \ b_0$ -Bildern
- gleiche Auswertung aller Datensätze (selbe Startgebiete)

- Messung: $9 \times b = 0$, $1 \times b = 500$, $1 \times b = 1000$
- Erstellung von Datensätzen mit 1, 3, 5, 7, 9 b₀-Bildern
- gleiche Auswertung aller Datensätze (selbe Startgebiete)

Idee: sicher fehlerhafte Tensoren zählen

Quantifizierung anhand von FA-Karten:

• wähle in allen Datensätzen exakt gleiches Gebiet • messe relativen Fehler $\frac{N_{err}}{N_{korr}}$

Idee: sicher fehlerhafte Tensoren zählen

Quantifizierung anhand von FA-Karten:

• wähle in allen Datensätzen exakt gleiches Gebiet

• messe relativen Fehler $\frac{N_{err}}{N_{korr}}$

Idee: sicher fehlerhafte Tensoren zählen

Quantifizierung anhand von FA-Karten:

• wähle in allen Datensätzen exakt gleiches Gebiet • messe relativen Fehler $\frac{N_{err}}{N_{korr}}$

Ergebnis

Aber bei 1,5 mm isotrop:

Ohne Gaußfilter

# B0-Bilder	Nerr
1	1106
4	980

Mit Gaußfilter		
# B0-Bilder	N _{err}	
1	9	
4	0	

 \rightarrow Mehrere b₀-Bilder können sehr schlechte Daten nicht retten \rightarrow Gaußfilter überwiegt den Einfluss der Anzahl der b₀-Bilder

visuelles System: wäre Durchbruch für tSTEAM

Track des visuellen Systems bei 1,5 mm + Gaußfilter

 \rightarrow Gaußfilter macht aus schlechtesten Daten noch "Verfolgbares"
Übersicht

- Biologie und Diffusion (im Gehirn)
- 2 Grundlagen MRT
- 3 MRT und Diffusion
- 4 Bestimmung und Interpretation des Diffusionstensors
- 5 Experimente und Ergebnisse
- 6 Zusammenfassung/Fazit

• gute Schätzung der Tensorkomponenten erfordert hohes SNR

- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks" lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks" lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b_0 -Bilder ist messbar aber gering
- mit "Tricks" lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks" lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks"lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks"lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

- gute Schätzung der Tensorkomponenten erfordert hohes SNR
- tSTEAM hat schlechtes SNR
- tSTEAM ist schnell und anatomisch korrekt \rightarrow motiviert Optimierung!
- der Einfluss der Anzahl der b₀-Bilder ist messbar aber gering
- mit "Tricks"lässt sich Qualität der Rohdaten erheblich verbessern (Gaußfilter!)
- visuelles System schon teilweise verfolgbar (hier scheitern andere Sequenzen an Suszeptibilitätssprüngen)
- von klinischer Anwendung der Faserverfolgung noch weit entfernt, aber mit tSTEAM auf einem guten Weg dorthin

DANKE!

Vielen Dank für die Aufmerksamkeit!