Optical traps: general applications

- hold and move
 - macroscopic dielectric objects (particles up to ~10µm diameter)
 - microscopic dielectric objects (trapping molecules, lasercooling of atoms)

- measure forces on trapped particles
 - learn something about molecule molecule interaction (e.g. molecular motors)

The idea: radiation pressure

- first developed by A. Ashkin in 1970
- force on every object reflecting/scattering or refracting light
- negligible for ordinary objects (e.g. 60W light on optimal mirror: F ~10^-7 N)
- significant for particles < 1µg

Force on polysterene bead (homogenous intensity)

- particle diameter > wavelength: ray optics picture sufficient to calculate forces
- ray **a** equal to ray **b** \longrightarrow $|\mathbf{F}_a| = |\mathbf{F}_b|$
- resultant force \mathbf{F}_{scat} along optical axis due to scattering effects on surface

Force on polysterene bead (gaussian intensity profile)

- $n_{bead} > n_{medium}$, bead's lighttransmission < 100%
- ray **a**: higher intensity than ray **b** \longrightarrow $|F_a| > |F_b|$
- resultant transversal force $\mathbf{F}_{\mbox{\tiny grad}}$ to beamcenter (maximum of intensity)
- but \mathbf{F}_{scat} still along optical axis due to scattering effects on surface

One of Ashkin's first experiments

- · bead is pulled to intensity maximum and pushed forward
- verification of theoretical predictions

Focused laserbeam: specify longitudinal force

- bead not in focus: resultant refractionforce to focus
- light coming from edges of objective contributes most to this force
- high numerical aperture (NA) needed for high longitudinal refractionforce.

Single-beam Tweezer

transversal stabilisation due to intensity gradient (gaussian profile)

longitudinal stabilisation due to intensity gradient (strong focused laser)

balance out longitudinal refraction- and scatteringforce: trapped particle

Single-beam OT: trapping force

- When does the bead leave the trap?
- for single-beam OTs: $\mathbf{F}_{\text{trap}} \sim 60 \text{ pN}$

Single-beam OT: measuring forces on trapped particles

- theoretically simple technique to measure forces
- conservation of momentum: Force F exerted by the laser is the difference between entering momentum flux and outgoing momentum flux
- momentum flux Q = nW / c (W: power of light, n: refraction index of outer medium)
- to measure Q_{out} all the outgoing rays have to be collected and detected
- therefore the back aperture of objective lens has to be underfilled

Single-beam OT: trapping force problems

- small trapping force
- decreasing back aperture filling to enable force measurement also means decreasing the trapping force or even to disable the trap
- observation of intermolecular processes with forces higher than \mathbf{F}_{trap} is not possible

Solution: dual-beam optical trap

- two equal laser beams face each other and are focused in the same spot
- scattering forces cancel up
- after underfilling back apertures: resultant trapping force is still up to 200 pN and force measurements are possible (extreme precisely; with technique described before)
- trap is very stable (important vor biological investigations)

Dual-beam optical trap: difficulties

- complexity (has to be constructed precisely from many single parts)
- alignment of optical paths (lasers exactly have to face each other)
- standard implementations of these instruments did not exist after 6 years of usage (2002)

if possible, a 'standard' single-beam tweezer is used

Applications in biophysics: molecular motors

movement obvervation kinesin protein

measurement of 8 nm steps of kinesin against 5 pN force

Applications in biophysics: molecular motors

movement obvervation of RNA polymerase enzym along DNA molecule

1998 Wang et al. found out, that RNA is a powerfull motor with a stall force of 21 -27 pN in comparison to kinesin (a motor protein with a stall force of 5 - 7 pN) and (1995, Yin et al.) a speed > 10 nucleotids per second.

Applications in biophysics: micromechanical properties

Measurement of the stretching of double- and singlestranded DNA

- graph: transformation of dsDNA to ss DNA at ~ 70 pN
- 1997 Wang et al. could determine persistence length and elastic modulus of DNA. They
 observed a significant effect on DNA stiffness by ionic strength

Literature

- Grange et al. (2002) Rev. Sci. Instr. 73, 2308 2316
- Marc C. Williams: Optical Tweezers: Measuring Piconewton Forces
- Arthur Ashkin: Optical Trapping and Manipulation of Neutral Particles Using
 Lasers: A Reprint Volume with Commentaries, World Scientific Publishing, 2007
- Kai Urig, Heike Böhm: Praktikum Biophysikalische Chemie: Optische Pinzetten,
 2005
- http://www.stanford.edu/group/blocklab/Optical Tweezers Introduction.htm (called 28th of June, 2007)